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Abstract—There have been numerous recent applications of graph databases (e.g.,the Semantic Web, ontology representation, social
networks, XML, chemical databases and biological databases). A fundamental structural index for data graphs, namely minimum
bisimulation, has been reported useful for efficient path query processing and optimization including selectivity estimation, among many
others. Data graphs are subject to change and their indexes are updated accordingly. This paper studies the incremental maintenance
problem of the minimum bisimulation of a possibly cyclic data graph. While cyclic graphs are ubiquitous among the data on the Web,
previous work on the maintenance problem has mostly focused on acyclic graphs. To study the problem with cyclic graphs, we first
show that the two existing classes of minimization algorithms – merging algorithm and partition refinement – have their strengths
and weaknesses. Second, we propose a novel hybrid algorithm and its analytical model. This algorithm supports an edge insertion
or deletion and two forms of batch insertions or deletions. To the best of our knowledge, this is the first maintenance algorithm that
guarantees minimum bisimulation of cyclic graphs. Third, we propose to partially reuse the minimum bisimulation before an update in
order to optimize maintenance performance. We present an experimental study on both synthetic and real data graphs that verified the
efficiency and effectiveness of our algorithms.

Index Terms—Cyclic graphs, minimum bisimulation, incremental maintenance, graph indexing, evolving graphs and graph algorithms.

✦

1 INTRODUCTION

Graph databases have a wide range of recent applications,e.g.,
the Semantic Web, ontology representation, network topolo-
gies, XML, chemical databases and biological databases. To
optimize query processing on large graphs, indexes have been
proposed to summarize the paths of data graphs. In particular,
many indexing schemes,e.g.,[1]–[9], have been derived from
a notion ofbisimulationequivalence of nodes [10]. In addition
to indexing, bisimulation has recently been used to support
selectivity estimation of structural queries [11]–[13].

To illustrate the applications of bisimulation, we presenta
simplified sketch of a popular benchmark data graph, namely
XM ARK, in Fig. 1(a). XMARK is a synthetic electronic
auction dataset:open_auction contains an author, a seller
and a list of bidders, whose information is stored inpersons;
person in turn watches a fewopen_auctions. To model
the bidding and watching relationships,open_auctions ref-
erencepersons and vice versa. From the perspective of
indexing of path queries, two nodes of a data graph are
bisimilar only if they have the same set of incoming paths.
A sketch of the bisimulation graph of XMARK is shown in
Fig. 1(b). (More formal examples are given after the relevant
definitions are presented.) In the sketched bisimulation graph,
bisimilar nodes are placed in a partition, denoted asIi. The
bisimulation graph is often smaller than the original data
graph, which makes it an efficient index. Consider a query
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Fig. 1. (a) A simplified XM ARK data graph; and (b) A sketch of
a bisimulation graph of XM ARK

q /site//open_auction/seller that selects allsellers
of open_auctions. We can evaluateq on the bisimulation
graph (Fig. 1(b)), as opposed to the data graph, and retrieve
the data nodes inI6. For query efficiency, it makes sense to
employ theminimumbisimulation,i.e., the smallest index.

A pressing issue of graph databases is that data graphs are
very often subject to small and/or rapid updates [14], [15].
For example, in the context of social networks, users/pages
and friendships are modeled as nodes and edges, respec-
tively. In 2010, Facebook [16] has roughly an increase of
eight new users per second, on average. Top growing pages
have, on average, one new fan every two seconds [17]. In
PUBCHEM [18], a public database of chemical structures, the
increase in chemically unique compounds during 2006 and
2011 was, on average, 12k compounds per day. In a popular
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bibliographXML dataset (DBLP [19]), the increase in nodes has
been, on average, 6.7k per day, during the last 9 years. These
real-world examples indicate large graphs may be subject to
frequent small updates.

Efficient incremental maintenance algorithms for propagat-
ing frequent small updates are desirable for three reasons.
(1) Incremental algorithms upon small updates have known
to be more efficient than full recomputation in many appli-
cations. Classical survey on incremental algorithms can be
found in [20]. (2) The quality (a.k.aefficacy) of bisimulation
degrades over updates if it is not minimized [21]. When bisim-
ulation is used as an index, the query performances degrade
accordingly. (3) During reconstruction, the bisimulationis
taken offline, which can be unacceptable to applications that
require high availability, such as social networks.

Recently, the maintenance problem of bisimulation has
received a renewed interest from database research [21]–
[24]. For example, recent works by Fan et al. [22], [23]
consider efficient bisimulation maintenance in the presence
of queries. Few previous works [21], [24] have addressed
the maintenance problem of the minimum bisimulation of
acyclicgraphs. While one may argue to simply apply previous
techniques to cyclic graphs, they may return only the minimal
bisimulations for cyclic graphs [21]. In practice, data graphs
are often cyclic,e.g., social networks and citation networks
[25]. As shown in our experiments, the minimum bisimulation
of a real citation network (DBLP) [19] is 9% smaller than
the minimal one. In this paper, we present the first study
on bisimulation maintenance algorithms of cyclic graphs that
guarantee minimum bisimulation, regardless of queries.

The existing work on maintaining bisimulation can be
divided into two classes:merging algorithmand partition
refinement. However, there are some weaknesses in applying
such work to cyclic graphs. First, merging algorithms fail to
determine the minimum bisimulation of cyclic graphs. Each
merging step often processes nodes by pairs, which is not
sufficient to determine the bisimulation within and between
strongly connected components(SCCs). Contrarily, we can
easily establish that a node of anSCC can be bisimilar to
a node of anotherSCC only if the twoSCCs are bisimilar (see
Section 4). Intuitively, the bisimulation of the nodes ofSCCs
are determinedtogether.

Second, while it is known that partition refinement produces
the minimum bisimulation of cyclic graphs, it is more suitable
for full construction. Its application to the maintenance prob-
lem is rather limited. The reason for this is that it rebuildsthe
entire updated minimum bisimulation from scratch. Although
in the worst case, an edge update may affect the minimum
bisimulation arbitrarily, in practice, an update may oftenaffect
the bisimulation locally. Therefore, partition refinementcan be
relatively inefficient in maintaining bisimulation.

Contributions. In this paper, we proposea novel hybrid
algorithm of the merging algorithm and partition refinement
to maintain the minimum bisimulation of cyclic graphs. The
hybrid algorithm supports theinsertions/deletions of edges
and subgraphs. The hybrid algorithm takes advantage of the
two algorithms and overcomes some of the weaknesses of the

individual algorithm. The main idea of the hybrid algorithm
is that given an update, we use partition refinement to handle
SCCs and the merging algorithm to handle the remaining nodes
and optimize the nodes on the border ofSCCs.

(1) First, we show that regarding cyclic graphs, merging algo-
rithms require a space ofΩ of the graphs’SCC in computing
the minimum bisimulation. We then present an efficient hybrid
algorithm that guarantees minimum bisimulations (Section4);
such a guarantee is absent in previous algorithms.The al-
gorithm is presented with edge insertion (Section 5.1) and
its extension on edge deletion (Section 5.2). The support of
subgraph and batch updates are also presented (Section 5.3).

(2) A unique issue of the hybrid algorithm is that the parti-
tions returned by partition refinement and merging algorithm
(respectively) may be merged in order to yield the minimum
bisimulation, which requires additional computation. There-
fore, our second contribution is to provide a generalization of
the cyclic graph representation. This generalization gives us a
way to specify the subgraphs to be handled by the two algo-
rithms. To determine the optimal performance from the two
algorithms, we propose an analytical model for determining
the optimal hybrid algorithm (Section 4.2).

(3) Furthermore, we propose three optimizations on the hybrid
algorithm by utilizing the minimum bisimulation prior to an
update. Through our initial experiments, we observed that
the topologies of the minimum bisimulation before and after
some random edge insertions/deletions are sometimes very
similar, if not identical. This motivated us to reuse some
existing minimum bisimulation to optimize the maintenanceof
the bisimulations ofSCCs. Specifically, we propose (i) partial
partition refinement, (ii) a new splitter for partition refinement
and (iii) a reduced computation between nodes outside and
inside SCCs (Section 6). The first two optimizations are
applicable to previous partition refinement algorithms while
the last optimization is specific to the hybrid algorithm.

(4) We conducted a comprehensive experimental study with
both synthetic and real datasets, presented in Section 7. It
verified that our hybrid algorithm is efficient; the analytical
model is accurate, and the optimizations are effective. Since
our algorithm maintains the minimum bisimulation, our algo-
rithm always returns smaller (if not the same) bisimulations
compared to previous work.

The rest of the paper is organized as follows. In Section 2,
we discuss related work. The preliminaries and notations are
then presented in Section 3. Section 4 details the hybrid
algorithm. We present the overall incremental maintenance
algorithm and the support of subgraph/batch insertions or
deletions in Section 5. Three optimization techniques are
proposed in Section 6, and an evaluation of the experiment
is reported in Section 7. Section 8 concludes the paper.

2 RELATED WORK

Existing bisimulation minimization and maintenance algo-
rithms can be roughly categorized into two classes, namely
merging algorithmsandpartition refinement algorithms. Two
previous merging algorithms [21], [24] have been proposed for
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incremental maintenance of theminimalbisimulation of cyclic
graphs. The algorithm proposed by Yi et al. [21] contains a
split and a merge phase. Upon an update to the data graph,
the bisimulation graph is split to a correct but non-minimal
bisimulation of the updated graph. The bisimulation graph is
then minimized in the merge phase. For acyclic graphs, this
algorithm produces the minimum bisimulation of the updated
graph. If the graph is cyclic, it only returns a minimal bisimu-
lation. Since Yi et al. [21] merges pairs of nodes iteratively in
the merge phase, it is not sufficient to determine the minimum
bisimulation ofSCCs. When their algorithm encountersSCCs,
the current merging step simply terminates. Thus, to support
cyclic graphs, the minimum bisimulation is occasionally re-
computed from scratch. Saha’s work [24] can be considered
as a follow-up to Yi et al.’s work. Saha proposed a split-
merge-split algorithm with a rank flag forSCCs, which was
originally proposed by Dovier et al. [26]. Similar to the other
previous work, Saha’s algorithm also maintains a minimal
bisimulation. However, there is neither an experiment report
nor an implementation for comparisons.

The claim on the support of cyclic graphs from the
work [21], [24] is based on a direct application of algorithms
for acyclic graphs. Thus, minimum bisimulations are not
guaranteed. A recent work by Deng et al. [27] on minimal
bisimulation maintenance only focused on optimization issues.

The partition-refinement algorithm proposed by Kaushik
et al. [28] may be seen as a variant of Paige and Tarjan’s
algorithm [29], i.e., a construction algorithm. Kaushiket
al. [28] proposed their own split to handle edge changes, and
this has been extended to maintain local bisimulation [2]. Their
experiment showed that they produced a bisimulation that is
always within 5% of the minimum bisimulation. Later exper-
iments showed that smaller bisimulations can be produced by
Yi et al. [21], which we compare through experiments.

Recently, Fan et al. [22], [23] proposed incremental graph
pattern matching and query preserving bisimulation-based
compression. The compressed graph is lossless only relative
to some class of queries, in particular, reachability queries
and graph patterns. In our work, we do not take queries as
input. Hellings et al. [9] focuses on external algorithm for
bisimulation of DAG. Cyclic graphs are not considered. The
maintenance problem has been left as a future work.

Bisimulations [10] have recently been revisited due to their
extensive applications on databases. There has been a host of
work on indexing for path queries, which in a nutshell, summa-
rizes a data graph using bisimulation,e.g.,[1]–[3]. The seminal
work is 1-index [1], which adopts bisimulation as an index
for regular paths. In practice, 1-index [1] can often be large.
A notion of local bisimulation, namelyk-bisimulation [2], has
been proposed to reduce index size, although some path infor-
mation may be lost. Local bisimulations are combined/joined
to “recover” such information or certain statistical properties
(e.g., uniform distribution) are assumed. To balance query
performance and index size, a follow-up work [3] proposed to
adaptively adjust thek in k-bisimulation. Our techniques can
be extended to support local bisimulation with straightforward
but tedious modifications. Due to space constraints, we opt to
focus on bisimulation alone. Some previous studies [7], [8]

considered bisimulation as a compression ofXML repositories
for efficient query processing. Bisimulation has also been
adopted for path query selectivity estimation (e.g.,[11], [12]).
A study on bisimulation maintenance benefitsall of the above-
mentioned applications.

3 PRELIMINARIES AND NOTATIONS

This section presents the preliminaries, notations and defini-
tions required by this work.

3.1 Data Graphs

Definition 3.1: A data graphis a rooted directed labeled graph
G(V , E, r, ρ, Σ), whereV is a set of nodes andE: V × V

is a set of edges,r ∈ V is a root node andρ : V → Σ maps
a vertex to a label, andΣ is a finite set of labels.

In the case of unrooted graphs, we may simply create an
artificial root called “root” to connect to every node of the
graph. For succinctness, we may simply denote a data graph
asG(V, E) when r, ρ or Σ are irrelevant to our discussions.
To facilitate the discussions on algorithms, we assume some
auxiliary functions of nodes. Given a data nodev, v.parent()
and v.sibling() return the parents and the siblings ofv,
respectively. For simplicity, we often use|G| to denote the
number of vertices|V | of the graph, which is also known as
the order of the graph, unless otherwise specified.

Cyclic graphs. Since our work focuses on cyclic graphs,
we review some relevant definitions. Astrongly connected
component(SCC) in a graphG(V , E) is a subgraphG′(V ′,
E′), V ′ ⊆ V , E′ ⊆ E and (v1, v2) ∈ E′ ⇒ v1 ∈ V ′∧v2 ∈ V ′,
where the nodes inV ′ can reach each other inG′. TheSCCs
of a graph can be determined by classical graph contraction
algorithms (e.g., Gabow’s algorithm [30]) with a runtime
O(|V |+|E|).

Graph contraction has been a classical preprocessing tech-
nique for cyclic data graphs, which we exploit to optimize our
proposed hybrid algorithm. Intuitively, given a cyclic graph,
graph contraction reduces anSCC into a supernodeiteratively
until a directed acyclic graph (DAG) is obtained. The graph
returned by graph contraction is often called thereduced
graph. The nodes that are not supernodes are sometimes called
simplenodes. We present some relevant definitions below.

Definition 3.2: A node n of an SCC G′(V ′,E′) of a graph
G(V ,E) is anexit node if there exists an edge (n,n1) wheren

∈ V ′, n1 ∈ V andn1 6∈ V ′. n is anentry node if there exists
an edge (n0,n) wheren0∈V , n0 6∈V ′ andn∈V ′.

3.2 Bisimulation

Next, we present the relevant definitions of bisimulation.

Definition 3.3: Given two subgraphsG1(V1, E1, r1, ρ1) and
G2(V2, E2, r2, ρ2), anupward bisimulation∼ is a relation of
V1 andV2:

∀ v1 ∈ V1, v2 ∈ V2, v1 ∼ v2 →
∀ (v′

1
, v1) ∈ E1, ∃ (v′

2
, v2) ∈ E2, v′

1
∼ v′

2
∧

∀ (v′′

2
, v2) ∈ E2, ∃ (v′′

1
, v1) ∈ E1, v′′

1
∼ v′′

2
∧ ρ1(v1) = ρ2(v2).

Two subgraphsG1 and G2 are upward bisimilar if an
upward bisimulation∼ can be established betweenG1 and
G2.
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We make two remarks before proceeding further. First, with
some classic optimization, the minimum bisimulation can be
computed inO(|E|log(|V |)) time [29]. Second, Definition 3.3
presentsupwardbisimulation in the sense that two nodes can
be bisimilar if they have the same label and all of theirparents
are bisimilar. In this paper, we present our techniques with
upward bisimulation only and skip other notions of bisimula-
tion (e.g., downward bisimulation used in [7]) which can be
supported by some minor extensions of this work. Therefore,
we may use the terms bisimulation and upward bisimulation
interchangeably. Definition 3.3 can be paraphrased in terms of
paths (Proposition 3.1), which often simplifies our discussions.

Proposition 3.1: Two nodes are upward bisimilar if the sets
of the incoming labeled paths of the nodes are the same.

A set of bisimilar nodes is often referred to as anequiv-
alence partitionof nodes or simply aspartition. Hence, a
bisimulation graph can be described as a set of partitions.
Since the bisimulation is often used as an index graph, the
partitions are sometimes referred to asindex nodes, or simply
Inodes, whereas the nodes of the data graph are referred to as
data nodes, Dnodesor simply nodes.

To distinguish between the notions of minimal and mini-
mum bisimulations, we present the following definitions.

Definition 3.4: Given two partitions of DnodesX and I, X

is stable w.r.t.I if either (i) X is contained in the children of
the Dnodes in the partitionI or (ii) X and the children of the
Dnodes inI are disjoint. Otherwise,X is unstable.

Example 3.1:We illustrate the definition of stability with the
example shown in Fig. 2. The data graph and a partitioning of
its nodes are shown in Figs. 2(a) and 2(d), respectively, where
the dotted ovals denote partitions. (i) LetI1 be the partition
with the b nodes andX1 and X2 are the partitions of thec
nodes.X1 is not contained in the children of the Dnodes in
I, and thus,X1 is unstable. Similarly,X2 is unstable; (ii) Let
I2 be the parition with thea nodes.I1 is contained in the
children of the Dnodes ofI2. Thus,I1 is stablew.r.t. I2.

Definition 3.5: Given a bisimulationB of a graphG, B is
minimal if for any two equivalence partitionsI, J ∈ B, either
(i) the Dnodes inI andJ have different labels, or (ii) merging
I andJ results in some partitionK whereK is unstable.

It is worth noting that the notion of minimality is defined
with respect to the algorithm that computes the minimal
bisimulation, as stated in Condition (ii) of Definition 3.5.In
comparison, minimum bisimulations do not assume any spe-
cific minimization algorithms. It is known that the minimum
bisimulation of a graph is unique [21].

Definition 3.6: A bisimulationB of a graphG is theminimum
bisimulation ifB contains the minimum number of partitions,
among all possible minimal bisimulations ofG.

Example 3.2: With respect to the data graph in Fig. 2(a),
Figs. 2(c) and 2(f) show its two possible minimal bisim-
ulations. Merging of any pairs of partitions with the same
label results in unstable partitions. For example, mergingthe
partitions ofb nodes of Fig. 2(c) results in unstable partitions,

shown in Fig. 2(d). Fig. 2(f) is the minimum bisimulation of
Fig. 2(a).

3.3 Bisimulation Minimization Algorithms

Next, we shall provide a brief review of the main ideas of the
two classes of bisimulation minimization algorithms usingthe
example shown in Fig. 2, which illustrates the strengths and
weaknesses of these algorithms in the context of updates.

Fig. 2(a) shows a cyclic data graph. Theb andc nodes form
an SCC. A merging algorithm (e.g., [21]) initially places each
node in a single partition,i.e., an Inode (Fig. 2(b)). Assume
that a merging algorithm merges pairs of partitions top-down.
It merges the twoa nodes underr (Fig. 2(c)). The merging
algorithm does not merge theb nodes, because theirc parents
have not been determined bisimilar. Fig. 2(c) is returned,
which is a minimal bisimulation. As discussed in Example 3.2,
merging more partitions would result in unstable partitions
(Fig. 2(d)). Intuitively, given any fixed merging algorithm
with a limited space budget, at a particular merging step on
two Inodes,e.g., Ib1 and Ib2 in Fig. 2(c), it is possible that
some bisimilar parents ofIb1 and Ib2 are not determined or
stored. This makes it inefficient to determine the minimum
bisimulation using merging algorithms.

In contrast, a partition refinement algorithm (e.g., [29])
initially places all nodes in a single partition (Fig. 2(e)). It then
refines (splits) existing partitions until the partitions are stable
(Figs. 2(f)). Fig. 2(f) is the minimum bisimulation, which
is 38% smaller than the minimal bisimulation in Fig. 2(c).
One may further observe that partition refinement is, by its
nature, non-incremental. It builds the minimum bisimulation
from scratch, which is costly for a single update.

Finally, we note that the relative performance of partition
refinement and merging algorithms depends on how bisimi-
lar the graph is: Suppose most subgraphs are non-bisimilar.
Partition refinement would take many splits to converge; on
the other hand, suppose most subgraphs are bisimilar. Merging
algorithms would require many merging iterations.

4 BISIMULATION OF CYCLIC GRAPHS

To begin our investigation, we show that it is often inefficient
to extend existing merging algorithms to maintain the mini-
mum bisimulation.

Merging algorithms for bisimulation minimization are it-
erative in nature. The current merging step of Inodes in
someSCCs may affect and depend on the merging of some
Inodes in otherSCCs. We encapsulate the iterative logic of a
merging algorithm in a functionA. In each iteration,A(I1,
I2) computes bisimulation between a pair of partitionsI1 and
I2. For clarity, we useA(G) to denote the application of the
algorithm on the graph.

To compute the minimum bisimulation,A(G) requires much
information about the to-be-merged Inodes to be maintained
and this is often infeasible for maintaining real-world graphs.
Hence, existing merging algorithms opt not to return the mini-
mum bisimulation for cyclic graphs. Specifically, we formalize
the memory requirement ofA in Theorem 4.1.
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Theorem 4.1: Given anSCC S and a merging algorithmA

for determining minimum bisimulation,A(S) requiresΩ(|S|)
space.

Proof: By definition of Ω, we need to show that there
exists constantsc andk such that for all|S| > k, A(S) requires
c × |S| space.

We establish the theorem with the example graph shown
in Fig. 3(a). The graph contains a single specialSCC S.
Specifically, the graph has a rootr; r reaches the partitions
I2 and I3 via the same kind of edge. In addition,S contains
two (overlapping) cycles: (I2n, I2n−2, ..., I6, I4, I2, I2n) and
(I2n, I2n−1, ..., I7, I5, I3, I2n). For simplicity, we assume that
each partitionI contains one node initially. Furthermore, we
assume that the minimum bisimulation of Fig. 3(a) is the one
shown in Fig. 3(b).

To compute the minimum bisimulation, in runtime,A must
determine if InodesI2 and I3 are bisimilar, denoted as
A(I2, I3) (i.e., whetherI2 and I3 are contained in a single
partition in the minimum bisimulaton). By Definition 3.3,
the bisimulation relationships of the parents ofI2 and I3

are needed to determineA(I2, I3). Therefore,A(I4, I5) is
necessary forA(I2, I3). Applying this argument recursively,
we needA(I2i, I2i+1), for all i ∈ [2, n-1], to determine
A(I2, I3). Importantly, since the partitionsI ’s are in anSCC,
A(I2, I3) is, in turn,necessaryto computeA(I2i, I2i+1) for all
i’s as well. The same argument can be applied toA(I2i, I2i+1)
for all i’s.

Let c = 1. That is,A(S) can use|S| space.A(I2i, I2i+1)
for all i’s can be determined together and the minimum
bisimulation ofS can be obtained. However, ifc < 1, then at
any merging step of any pair of partitions,A does not have
the necessary information to conclude whether they belong to
the same partition in the minimum bisimulation.

It may be worth-noting that using merging algorithms with a
O(|G|) space does not make any sense; as one can simply use
partition refinement, which can reconstruct the bisimulation
from scratch. The hybrid algorithm proposed in this sectionis
specially designed to apply partition refinement onSCCs.

We also note that Theorem 4.1 cannot be extended to acyclic
graphs. In fact, a previous work [21] has proposed a merging
algorithm that efficiently returns the minimum bisimulation.

The intuition that determining the minimum bisimulation of
acyclic graphs is strictly simpler is because there is a topo-
logical order of nodes. Merging algorithms can exploit this
ordering, which determines when the bisimulation between
nodes is no longer needed for the computation of other nodes
and can be safely removed from the algorithms’ runtime
stack/memory. Such ordering is absent in cyclic graphs.

In comparison, while partition refinement can determine the
minimum bisimulation, it is not incremental. By definition,
partition refinement starts with a single partition and applies
refinement recursively, where existing bisimulation is notused.

In response to this, we propose a hybrid minimization
algorithm for bisimulation in Section 4.1. An analytical model
of this algorithm is detailed in Section 4.2.

4.1 Hybrid Minimization Algorithm
This section presents our hybrid algorithm,
bisimilar_cyclic, which is a crucial ingredient of our
incremental maintenance algorithm. The algorithm interleaves
partition refinement forSCCs and the merging algorithm for
acyclic subgraphs. The strength of partition refinement is that
it can determine the minimum bisimulation even for cyclic
graphs. Therefore, we apply partition refinement onSCCs.
On the other hand, merging algorithms are more natural for
incremental computation and are therefore applied to the
subgraphs that are not part of anySCCs.

The pseudo-code is presented in Fig. 4, which serves as the
basis for our analysis and optimization techniques. The input
of bisimilar_cyclic is a reduced graphG of a data graph
G0 and the output is the minimum bisimulation ofG0. Its
application on updates is detailed in Section 5.

The pseudo-code can be described as follows. It traverses
the reduced graph top-down (in topological order, as in Lines
01 and 08). We skip the pseudo-code for traversal as it is
straightforward. The nodes that are ready for processing are
denoted asQ. We process the supernodesS (i.e., SCCs) and
then the simple nodesQ′ = Q−S, where the simple nodes are
simply the Inodes that are not involved in anySCCs. We use
partition refinementpartition_refinement to compute the
minimum bisimulation between and among the Inodesinside
supernodesS (Lines 04 and 10-18). Specifically, we create
an artificial root node (Line 10) to connect all the parents
of SCCs in S (Lines 11-14). Then, we simply apply existing
partition refinementPaige_Tarjan (e.g., [29]) to determine
the minimum bisimulation. We remove the artificial root after
the minimum bisimulation is obtained (Line 16).

The simple Inodes inQ′ are processed by a merging
algorithmmerge_bisimilar (Lines 07 and 19-25). Lines 20-
21 check a simple nodeq in Q′ and its siblings with the
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Procedure bisimilar_cyclic
Input: a reduced data graphG
Output: the minimum bisimulation ofG, B

01 Q = get_next_top_order(G)

02 while Q 6= ∅
03 S = {s | s is a supernode ands ∈ Q}
04 partition_refinement(S)

05 Q′ = Q − S
06 foreach q in Q′

07 merge_bisimilar(q, B)
08 Q = get_next_top_order(G)
09 return B

Procedurepartition_refinement(S)
10 G(V , E) = ({r}, ∅)
11 foreach s in S
12 G = G ∪ s
13 foreach p in s.parent()
14 G.E = G.E ∪ (r, p)
15 Paige_Tarjan(G)
16 remover
17 foreach s in S
18 s.processed = true

Proceduremerge_bisimilar(q, B)
19 q.processed = true
20 foreach q′ in q.sibling()
21 if ∀p ∈ q.parent() ∃p′ ∈ q′.parent() s.t. p ∼ p′ ∧

∀p′ ∈ q′.parent() ∃p ∈ q.parent() s.t. p ∼ p′

22 if q′ is inside a supernodes
23 update the parents ofq 6∈ s to

(i) the entries ofs and (ii) the parents ofq′

24 update the children ofq 6∈ s to
(i) the exits ofs and (ii) the children ofq′

25 merge(q, q′)

Fig. 4. Bisimulation minimization of cyclic graphs

bisimulation definition (Definition 3.3). It should be notedthat
the siblingq′ of q can be an Inodeinsidea supernode (i.e., an
SCC). Since we process the supernodes (Line 04) prior to the
simple nodes (Lines 07) and the simple nodes in topological
order (Lines 01 and 08), the bisimulation between the parents
of q andq′ has already been determined prior to determining
bisimulation betweenq and q′. Therefore, ifq′ ∼ q, q′ can
be located from the siblings ofq in the bisimulation graph
computed so far (Line 20). A correctness argument is provided
in the proof of Theorem 4.2. Ifq andq′ are bisimilar, we merge
q and q′ (Line 25). We omit the pseudo-code ofmerge as it
is straightforward. In addition, ifq′ is in a supernodes, the
parents and children ofq that are not ins are set to be the
entry and exit nodes ofs, respectively (Lines 23-24).

Example 4.1: Figs. 5(a)-(d) show a run of
bisimilar_cyclic on the synthetic graph shown in
Fig. 5(a). We assume that theSCCs have been identified by
Gabow’s algorithm, where the supernodes are highlighted in
Fig. 5(a). Also, we assume that each Dnode has been initially
placed in an Inode. For clarity, we omit such simple Inodes
from the figures.bisimilar_cyclic traverses the graph
in Fig. 5(a) top-down. It does not encounter any supernode
in the first two levels. Hence, onlymerge_bisimilar
is invoked and produces Fig. 5(b). In the third iteration,
supernodes 1 and 2 are encountered. We note that previous
work [21] terminates and returns Fig. 5(b). In contrast, the
hybrid algorithm invokes partition_refinement and
produces the minimum bisimulation between supernodes 1

and 2. The result is shown in Fig. 5(c). The traversal proceeds
and encounters ac node connecting to supernode 1. Its only
Inode parent is the same as the Inode of otherc nodes.
Hence,merge_bisimilar identifies this case (Line 20) and
merges thec node into the Inode of otherc nodes. Similarly,
bisimilar_cyclic identifies theb node that connects to
supernode 1 but is outside the supernode. Since theb node
does not have ana Inode parent as the otherb nodes do, the
b node is not merged due to Line 21. The traversal proceeds
and returns Fig. 5(d) as the final result. We include supernode
3 simply to illustrate that an arbitrary subgraph may be
connected to supernodes and previous merging algorithms
may return a bisimulation far from the minimum one.

Theorem 4.2: bisimilar_cyclic(G) returns the minimum
bisimulation ofG.

Proof: The correctness ofbisimilar_cyclic can be
established by analyzing all possible bisimilar nodes inG.

Case 1: The bisimilar nodesn1 and n2 are not in any SCC.
The reduced graphG is a DAG and n1 and n2 are simple
nodes inG. The merging part (Lines 01-02 and 06-09) of
bisimilar_cyclic is a non-optimized version of the merge
phase of [21]. By Theorem 1 in [21],bisimilar_cyclic
returns the minimum bisimulation of acyclic graphs.

Case 2: The bisimilar nodesn1 and n2 are in some SCCs.
n1 andn2 can be bisimilar only if the supernodes ofn1 and
n2 are either the same or bisimilar. The bisimulation between
supernodes is determined correctly, by Case 1, as they are
nodes of the directed acyclic graphG. When supernodes are
encountered, the classical partition refinement algorithmin
partition_refinement (Line 04) of bisimilar_cyclic
produces the minimum bisimulation of theSCCs of and be-
tween the supernodes.

Case 3: n1 is in an SCC; n2 is not in any SCC; and
n1 and n2 are bisimilar. This remaining case shows that
bisimilar_cyclic can identify the bisimulation between
(i) the Inodes that are notinsideany supernode and (ii) some
Inodes inside a supernode (SCC).1

We can prove this case by a simple induction on the
depth of the reduced graph. Define the depth of a noden

of a reduced graph (directed acyclic graph) as the maximum
distance between the root node andn; and the depth of a
reduced graph as the maximum depth among all nodes. The
induction hypothesisis stated as follows:

Φ: “bisimilar_cyclic returns the minimum bisimulation
of a reduced graphGm, whereGm has a depthm.”

The base case, wherem = 1, is trivially true.

The induction case: Assume that the induction hypothesis is
true up tok. We now consider a reduced graph with a depth
k + 1. By definition, the nodes with the depthk and those
with the depthk + 1 are not bisimilar.bisimilar_cyclic
processes all of the nodes with the depthk prior to those
nodes withk + 1 due to a traversal in the topological or-
der get_next_top_order(G). By the induction hypothesis,

1. It is straightforward that (i) a supernode itself and (ii)any simple Inode,
that is not in anySCC, are not bisimilar.
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Fig. 5. Illustration of the hybrid algorithm bisimilar_cyclic

bisimilar_cyclic returns the minimum bisimulation of the
subgraphGk of G, whereGk is the subgraph ofG with a
depth k. Suppose a nodenk+1 is bisimilar to another node
n′ inside a supernodes, where the depth ofnk+1 is k + 1.
Sincenk+1 is bisimilar ton′, the depth ofs must be smaller
or equal tok + 1. In addition, by Definition 3.3, for each
parentp of nk+1, there is a parentp′ of n′ such thatp ∼ p′.
By the induction hypothesis,p and p′ are declared bisimilar
and placed in anInode (Lines 22-25) in an earlier run of
bisimilar_cyclic. That is,nk+1 andn′ are siblings, after
the minimum bisimulation ofGk has been computed. Thus,
nk+1 andn′ are checked (Line 21) and merged (Line 25).

4.2 The Analytical Model

An asymptotic analysis onbisimilar_cyclic is fairly sim-
ple. bisimilar_cyclic runs in Big-theta of the slower of
the merging algorithm and partition refinement used. However,
the actual performance bottlenecks of an implementation ofthe
algorithm may be better analyzed using an analytical model.
This section presents such a model of the hybrid algorithm.

We first distinguish thecross nodesand thenon-cross nodes
that are both processed by the merging part of the hybrid
algorithm. More specifically, the cross nodes and non-cross
nodes are processed by Lines 19-25, and Lines 19-22 and 25,
respectively. An example of the only cross node in Fig. 5(a)
– thec connected to supernode 1 – is annotated in Fig. 5(d).

Definition 4.1: Cross nodesC are theInodes that are not in
any SCC but are bisimilar to anInode inside anSCC. The
distancedist of a cross nodec ∈ C (c.dist) is the length of
the shortest path from an exit node of anSCC to c.

Next, we denote the cost ofbisimilar_cyclic as Cost.
Cost consists of three costs: the unit costs for (i) partition
refinementP of supernodes; (ii) the merging algorithmM
of non-cross nodes; and (iii) the merging of cross nodes
C. Sp, Sm and Scr are the subgraphs applied to partition
refinement, merging of non-cross nodes and merging of cross
nodes, respectively.

Cost = |Sp| × P + |Sm| × M + |Scr| × C (1)

P , M andC can be measured as the minimum bisimulation
is constructed, for example, by a run ofbisimilar_cyclic.
During the run, we can easily determine|Sp|, |Sm| and |Scr|.
P is estimated as the average runtime of Line 04.M represents
the average runtime of Lines 19-22 and 25 for non-cross nodes.
Finally, C denotesM plus the average overhead due to Lines
23-24 for cross nodes.

Suppose the updates are relatively small.P , M and C

can be considered as constants before and after updates. In
addition, we have|Sp| + |Sm| + |Scr| ≈ |G|. Also, it is often
the case thatP � C, because the maintenance of intermediate
bisimulations is far more costly than iterative refinements. In

view of this, we present an optimization in Section 6 that
relaxes the correctness of intermediate bisimulations.

Example 4.2: To illustrate the formula, we show some
numbers obtained from a run ofbisimilar_cyclic of our
implementation on anXMark graph.|Sp|, |Sm| and |Scr| are
137.6k, 1,529k and 62.8k nodes, respectively.P , M and
C are 0.036ms/Dnode, 0.007ms/Dnode and 0.493ms/Dnode,
respectively. The total cost is 46.6 seconds. At first glance,
the unit cost of merging algorithmM is very small. We note
that M is small since|Sm| includes both bisimilar and non-
bisimilar nodes outside theSCCs (checked by Line 21), where
the time for processing the latter is very small.C shows more
precisely the performance of merging as all of the cross nodes
are merged (Lines 23-24). In our implementation,C is more
than an order of magnitude (13.7 times) slower thanP . We
remark that|Sp| is two times larger than|Scr|.

4.3 Generalization of Reduced Graphs

From Example 4.2 and Formula (1), we can observe that to
optimize runtime, we may reduce the number of cross nodes.
In addition, Theorem 4.2 states that it is sufficient to apply
partition refinement onSCCs to obtain the minimum bisimula-
tion. In response to the analysis, we present a generalization of
reduced graphs that: (i) the generalized reduced graphs contain
fewer cross nodes; (ii) partition refinement may not operate
on excessively large subgraphs; and (iii) the hybrid algorithm
(without any modification) can operate on.

The main idea of the generalization is to reduceSCCs
together with the subgraphs connecting to them to supernodes.
More specifically, given a supernodes, we denoteGs,k to be
the subgraph that contains (i)s and (ii) the nodes connected
to s via a path with at mostk steps. Next, we extend the
supernode ofs to represents as well asGs,k. We useGk

to represent
⋃

s∈S Gs,k, where S is the set ofSCCs in the
graphG. As a result, the cost of the hybrid algorithm can be
rewritten as follows.

Costk = |Gk|×P +(|Sm \Gk|)×M +(|Sc \Gk|)×C (2)

As k increases, more subgraphs (i.e., Gk) are applied
to partition refinement. Meanwhile, smaller subgraphs (i.e.,
Sm \ Gk andSc \ Gk) are handled by merging algorithms.

It is worth-noting that the largest possiblek is the diameter
of the reduced graph. Our preliminary experiments show
that if the generalization of the reduced graphs improves the
overall performance, a smallk is sufficient. Since the sizes
of Gk, for all k’s, may be recorded and determined in a run
of bisimilar_cyclic, the k for the optimal performance,
denoted askmin, can be easily computed.

Given the value ofkmin, we recompute the supernodes with
kmin, which also results in a reduced graph. Then, the reduced
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graph and its minimum bisimulation will be maintained with
the hybrid algorithm, which will be presented in Section 5.

Example 4.3: Following up Example 4.2, we determine the
numbers needed for computingCostk, as presented in Formula
(2), in a run ofbisimilar_cyclic. We note thatG1 to G5

are 47k, 88.5k, 102k, 105.7k and 106k, respectively. Then, we
can compute thatkmin = 2, whereCostk2

= (137.6k + 88.5k)
× 0.036ms + ( 1,529k - 88.5k) × 0.007ms + 266× 0.493ms
= 18.4s. As a reference, the actual runtime was 20s.

Finally, we remark that the model may be used to make
a coarse prediction on the largest number of updates (i.e.,
the size of a batch of updates) to be handled by the hybrid
algorithm, as opposed to a full recomputation using partition
refinement.Costk models the worst case scenario of an update:
an update affects allSCCs in the data graph. To simplify
our analysis, we assume that an update, on average, affects
f% of the SCCs. Therefore, the cost of the hybrid algorithm
is approximatelyf%× Costk. For example, the time for a
full recomputation of the minimum bisimulation ofXMark is
approximately 0.036ms × 1.68M = 60.48 seconds. Supposef

is 20%. The hybrid algorithm is efficient when the number of
updates is smaller than 60.48/(18.4× 20%) ≈ 16. From our
experiments, we observe that this number is 12.

5 INCREMENTAL MAINTENANCE

This section proposes the overall maintenance algorithm and
its support on various forms of updates. First, in Section 5.1,
we present the insertion of an edge (n1, n2) (i.e., insert in
Fig. 6), wheren2 can be either existing or new node. Then,
single edge deletion is described in Section 5.2. Subgraph and
batch updates are presented in Section 5.3.

5.1 Single edge insertion

In a nutshell, the overall algorithm consists of astabilize
phase with an explicitSCC handling, which is absent in pre-
vious algorithms, and aminimize phase which is essentially
bisimilar_cyclic detailed in Section 4. Since an update
may make a bisimulation unstable, thestabilize phase
computes a stable but non-minimum bisimulation. Then, the
minimize phase uses the hybrid algorithm for minimization.
Below, we give the details of thestabilize phase.

The stabilize phase.The stabilize phase is presented in
Lines 01-06 and 08-27 of Fig. 6. We maintain two priority
queues, ranked by their topological order, to record two kinds
of Inodes that need to be stabilized. Specifically, we useS
to record the Inodes inside somesupernodes(Line 02) and
Q (Line 03) to record theInodes that are not in anySCCs
maintained in topological order.In thestabilize phase, we
mark the modified Inodes (Lines 13 and 21) which will be
examined in theminimize phase in topological order.

The pseudo-code in Fig. 6 can be described as follows. First,
we simply insert a new data edge into the reduced data graph
and a new edge between Inodes into the bisimulation graph,
in Line 24 and Line 25, respectively. Assume the insertion
makes the Inode ofn2 unstable (Line 26). To initializeS, if
n2 is in a supernode, we addn2 and its Inode toS (i.e.,{(In2

,

Procedureinsert
Input: an edge to be inserted (n1, n2), a reduced graphG,

and its minimum bisimulationB
Output: An updated graphG′ and its updated minimum

bisimulationB′

/* 1. Initialization */
01 if n1 6∈ G then raise exception /* invalid insert */
02 S = ∅ // a priority queue of affected SCCs in top. order
03 Q = ∅ // a priority queue of affected non-SCCs in top. order
04 (G, B, Q, S) = insert_init((n1, n2), G, B, Q, S)

/* 2. Stabilize the updatedB into a stable bisimulation */
05 istabilize(Q, S, G, B)

06 G′ = Gabow(G) /* update the SCC info. inG′ */

/* 3. Merging the marked inodes by the hybrid algorithm */
07 return bisimilar_cyclic_marked(G′, B)

Procedureistabilize(Q, S, G, B)
08 while Q 6= ∅ or S 6= ∅

/* 1. stabilize theall Inodes in supernodes first */
09 while S 6= ∅ then
10 pick a node (In, n) from S;

remove (In, n) from S

11 if In is neither stable nor a singleton
12 split In into I1 = In - {n} andI2 = {n}

for all (In, n′) in S
replace it with (I1, n′) and (I2, n′) in S

13 markI1 andI2
14 add{(Ins , ns) | ns is child of ni, ni ∈ I2

andns in some supernodes} to S
15 add{Inq | nq is a child ofni, ni ∈ I2

andnq is not in any supernodes} to Q

/* 2. stabilize Inodes that are not inside any supernode */
16 while Q 6= ∅ then
17 pick a nodeIn ∈ Q; removeIn from Q
18 if In is neither stable nor a singleton
19 split In into a stable setI

for all In in Q replace it withI in Q
20 for each I in I
21 markI
22 add{(Ins , ns) | ns is ni’s child,

ni ∈ I andns in the supernode ofn} to S
23 add{ Inq | nq ∈ child of ni,

ni ∈ I andnq not in any supernodes} to Q

Procedureinsert_init((n1, n2), G, B, Q, S)
24 G = insert (n1, n2) into G and the data graph ofG
25 if n2 is new

then create a new InodeIn2
;

insertIn2
into B;

mark In2

26 if In2
is not stable

27 add{(In2
, n2) | n2 is inside a supernode} to S

add{In2
| n2 is not inside any supernode} to Q

Fig. 6. A single edge insertion for the minimum bisimulation of
cyclic graphs

n2)}). Similarly, we add toQ the InodeIn2
if n2 is not in

any supernode (Line 27).
Next, we stabilize the Inodes inS andQ recursively until

a stable bisimulation is obtained (i.e., S andQ are empty):
(1) We process the Inodes inS as follows (Lines 09-15): We
select a noden and its InodeIn from S. We split n from
In as theSCC of n is potentially non-bisimilar to theSCC of
other nodes inIn (Lines 10-12). (The maintenance ofS will
be needed by batch updates and explained in Section 5.3.) We
mark the split Inodes (Line 13) so that they will be checked
in theminimize phase. In Lines 14-15, we insert the children
of the split Inode that are involved in some supernodes intoS
and the remaining children intoQ.
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(2) The handling ofQ is shown in Lines 16-23. We select an
InodeIn from Q (Line 17). As in other work (e.g., [21]) for
acyclic graphs (Line 19), ifIn is not stable, we splitIn into a
set of stable InodesI. (Similarly, the maintenance ofQ will be
elaborated in batch update.) For succinctness of presentation,
we postpone the discussion on our splitter optimization until
Section 6. We mark Inodes inI in Line 21. In Lines 22-23,
we update the affected nodesS andQ, similar to Lines 14-15.

Lemma 5.1: Given a graphG0 and its reduced graphG,
an edge insertion (n1, n2) and the minimum bisimulationB
of G0, Procedureistabilize returns a stable bisimulation
graph B′ of the updatedG0.

Proof: We prove the lemma by contradiction. First, we
make the following assumption:

Ψ: “istabilize yields an unstable bisimulation graph.”

By this assumptionΨ, there is at least one unstable Inode
X in B′. Note thatX was stable before the insertion (n1,
n2). The stability of some ancestors ofX must be altered by
(n1, n2). As we are considering asingle insertion,X must
be (directly or indirectly) connected ton2. Then, we consider
two (exhaustive) cases ofX:

Case 1. If X is directly connected ton2, X is made stable by
Lines 04-05 and either of Lines 14-15 or Lines 22-23. This
contradicts withΨ. ⇒⇐

Case 2. SupposeX is indirectly connected ton2. Then, we
show a contradiction toΨ by an induction.

Hypothesis: istabilize stabilizesIk, where for allIk in Ik,
there is a path of the lengthk from n2 to Ik.

Thebase caseis k = 1, which is Case 1. Then, let us consider
the inductive stepIk+1. Consider an InodeIk+1 ∈ Ik+1,
where Ik+1 is a child node of an InodeIk in Ik. Suppose
Ik+1 is unstablew.r.t. Ik. Since the whole bisimulation graph
was stable before the insertion,Ik must have been modified,
specifically, split by istabilize, in an earlier iteration of
istabilize. istabilize is invoked in Line 12 and Line
19 only. Thus, we examine the following two (exhaustive)
sub-cases:
Case 2.1. SupposeIk is the result of the split logic at Line 12.
The reduced graph is aDAG and the while loop inistabilize
encodes a topological traversal. Therefore, whenIk is split, its
child Inodes, includingIk+1, are not marked. SupposeIk is
eitherI1 or I2 in Line 12. SinceIk+1 is a child ofIk, Ik+1 is
added to eitherS (Line 14) orQ (Line 15). Therefore,Ik+1

will be stabilized in later iterations.

Case 2.2. SupposeIk is the result of the split logic at Line 19.
Due to the topological traversal ofistabilize, Ik+1 is not
marked. Its child Inodes, includingIk+1, are added to either

S or Q (Lines 22-23) and stabilized in later iterations.
Therefore, all unstable InodesIk+1’s in Ik+1 must be

stabilized in some iterations inistabilize, as they are all
placed in eitherS or Q. The hypothesis is true, which is a
contradiction ofΨ. ⇒⇐

The stabilize phase essentially traverses the bisimulation
graphB andSCCs in the reduced data graph to stabilize and
mark the Inodes that are affected by the update. In addition,
sinceSCCs themselves may be affected by an update, we use
Gabow’s algorithm to compute the updatedSCC information
of the reduced graph, which is needed by the hybrid algorithm
(in Line 06).

The minimize phase.The minimize phase is an application
of bisimilar_cyclic detailed in Section 4.1, with a minor
modification. The modification is that we do not apply the hy-
brid algorithm to all of the Inodes returned by thestabilize
phase, but only to the Inodes that have been marked.

Example 5.1: We illustrate Algorithm insert (mainly
istabilize) with an example. A cyclic data graph is shown
in Fig. 7(a). For simplicity, we assume that the nodes in
the data graph have the same label and skip the drawings
of trivial supernodes. To facilitate discussion, the node id of
each data node is shown. We use{} to denote an Inode. The
minimum bisimulation of Fig. 7(a) is shown in Fig. 7(b).
Assume that we insert an edge (20,17) into the data graph.
Algorithm insert initially puts {12,17} into Q (Line 04).
{12,17} is unstable because node 20 has a child in{12,17}
but node 15 does not. Then, in Line 19, node 17 is split from
{12,17}. The modified Inodes are marked, with a “*” sign
in the figure. Thestabilize phase proceeds recursively and
finally produces the graph in Fig. 7(c). We invoke Gabow’s
algorithm to update theSCC information of the reduced data
graph. By calling the hybrid algorithm, we obtain the updated
minimum bisimulation, shown in Fig. 7(d).

It should be remarked that while a previous work [21]
produces the same stabilized graph (Fig. 7(c)), it returns
Fig. 7(c) as the final bisimulation. This is because it lacks
the handling onSCCs as discussed in Section 4. Subsequently,
any subgraph that is connected to theSCC with nodes 17, 18,
19 and 20 (e.g., node 21) will not be merged, as theSCC is
not merged with other bisimilarSCCs.

Analysis.The time complexity of Procedureistabilize can
be established as follows. The Inodes are processed by either
of the while loops (Lines 09 and 16) at most once, which takes
O(|E|). Without any optimization, the split takesO(|V |) in the
worst case. With proper optimization (e.g.,[29]), stablizing an
Inode can be done inO(log(|V |)). Hence. thestabilize
phase runs inO(|E|log(|V |)).
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Theorem 5.2:The bisimulation graph returned byinsert is
minimum.

Proof: This can be established by putting Theorem 4.2
and Lemma 5.1 together. Specifically,istabilize returns a
correct bisimulationB of the updated graph and the hybrid
algorithm determines the minimum bisimulation ofB.

5.2 Single edge deletion

Our technique on edge insertion can be adopted to support
an edge deletion (n1, n2) with minor modifications. Here, we
discuss the modifications in relation to the pseudo-code of the
algorithminsert presented in Fig. 6: (i) In Line 01, we delete
the edge from the data graph. (ii) After the deletion, we check
the stability ofIn2

in Line 02, initializeS andQ, and finally
invoke stabilize and bisimilar_cyclic_marked as in
insert.

Example 5.2: Following up the insertion example of Fig. 7,
suppose that we delete the edge between nodes 20 and 17
from the data graph of the bisimulation shown in Fig. 7(d).
Since node 17 is in a supernode, ({2,7,17}, 17) is placed in
S. Then, by Lines 09-15 ofistabilize, we split 17, 18,
19 and 20 from the Inodes of the supernode iteratively. Since
Inode {6,11,21} is connected to the supernode, node 21 is
also split from its Inode by Lines 16-23. This results in the
graph in Fig. 7(c)without the edge ({20}, {17}). By applying
the hybrid algorithm on such graph, we obtain the minimum
bisimulation shown in Fig. 7(b).

5.3 Batch Updates

This subsection shows how updates of a subgraph and batch
updates of edges are supported. Similar to the previous sec-
tions, we present our techniques with insertions. The details of
deletions are similar and are omitted due to space constraints.

Subgraph insertions. A subgraph insertion can be sup-
ported by a combination of the techniques proposed in
earlier sections. The pseudo-code is presented in Proce-
dure insert_subgraph, in Fig. 8. We assume that the to-
be-inserted subgraphg will be connected to an existing graph
G via an edge.insert_subgraph computes the minimum
bisimulation of g, denoted asb, and invokesinsert to
insert the edge that connectsG and g, that returns the
minimum bisimulation of the updated graph. The correctness
of insert_subgraph is a direct extension of Theorem 5.2.

As presented in Section 4, the performance bottleneck
of insert is on determining bisimulation betweenSCCs
and non-SCCs (i.e., the cross nodes ofbisimilar_cyclic).
In insert_subgraph, when a subgraph is inserted,
bisimilar_cyclic is invoked once.

Batch insertions. It may sometimes be inconvenient to only
allow updates that localized in a subgraph. In addition, if a
to-be-inserted subgraphg is connected to an exsiting graph
G with multiple edges, we first insert the subgraph using
one edge and then insert the remaining edges in a batch.
To address these updates efficiently, the technique above is
generalized to other forms of batch insertions, as shown
in Procedureinsert_batch of Fig. 8. More specifically,

Procedureinsert_subgraph
Input : a subgraph to be inserted (n1, g), a reduced graphG,

and its minimum bisimulationB
Output : An updated graphG′ and its updated minimum

bisimulationB′

01 b = partition_refinement(g)
02 insert((n1, n2), G ∪ g, B ∪ b)

Procedureinsert_batch
Input : a set of edges to-be-insertedEδ , a reduced graphG,
and its minimum bisimulationB
Output : An updated graphG′ and its updated minimum

bisimulationB′

01 for each (n1, n2) in Eδ

if n1 6∈ G then raise exception /* invalid insert */
02 S = ∅
03 Q = ∅
04 for each e in Eδ

05 (G, B, S, Q) = insert_init(e, G, B, Q, S)

06 istabilize(Q, S, G, B)
07 G′ = Gabow(G)
08 return bisimilar_cyclic_marked(G′, B)

Fig. 8. Insertion of a subgraph

insert_batch takes a set of edge insertionsEδ, a re-
duced graphG and its minimum bisimulationB as input
and outputs the minimum bisimulation.insert_batch calls
insert_init to initialize the two priority queues (S and
Q) used in insert with each edge inEδ. If inserting e,
where e = (n1, n2), makesB unstable, we recordn2 in S
and Q and stabilize the relevant Inodes fromIn2

iteratively
by usingistabilize (Line 06). In stabilize, the Inodes
to-be-split due to the edges in|Eδ| may be overlapping, which
may appear multiple times inS andQ. Thus, after each split,
istabilize replaces the existing Inode inS andQ with the
Inode after the split (Lines 12 and 19 ofistabilize).

We remark that in insert_batch, the initialization
of insert is invoked |Eδ| times, which takesO(|Eδ|)
time. In thestabilize phase, the Gabow’s algorithm and
the minimize phase are invoked once only. Therefore,
insert_batch andinsert have the same time complexity
when |Eδ| � |G|. In other words,insert_batch extends
the usability ofinsert by paying a negligible cost.

Due to space limitations, we prove the correctness of
insert_batch in Appendix B.

6 OPTIMIZATION ON THE HYBRID ALGORITHM

On top of the algorithms proposed earlier, we present three
optimizations, that arise from bisimulation maintenance.The
first two are applicable to partition refinement in general (i.e.,
for acyclic and cyclic graphs). The third is specific to cross
nodes which affect the performance of our hybrid algorithm.

1. Optimizing partition refinement. Given a reduced graph
G of a data graphG0 (after update), Lemma 5.1 states
that the bisimulationB returned byistabilize is a stable
bisimulation ofG0. By Theorem 1 of Kaushiket al. [28], B is
known to be a refinement of the minimum bisimulation. This
implies that it is not necessary to further refine the partitions
in B. Thus, only partial refinement is invoked in maintaining
the minimum bisimulation.

Specifically, in computing the minimum bisimulation ofB

using partial refinement, we consider the input data graph asB
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as opposed to the nodes ofSCCs ofG0. That is, the partitions in
B arenon-partitionable. Then, partition refinement is applied
on the SCCs of B, whose size is often much smaller than
those ofG0. Assuming thatBmin is the minimum bisimulation
obtained, the nodes in a partitionI in Bmin are simply all
of the nodes inIi for all i: ∀Ii∈I {n | n ∈ Ii}. A similar
optimization (in the absence of reduced graphs) has been
adopted in previous work (e.g., [21], [28]).

2. Optimizing refinement splitter. A classical optimization
on partition refinement is to recursively split smaller partitions
first [29]. It has been shown that this optimization leads to a
lower time complexity and to a faster partition convergence. It
is evident that such an optimization assumes that the size (the
number of nodes) of a partition is generally directly propor-
tional to the splitting required to stabilize the partition. If the
topology of the bisimulation graph does not alter dramatically
by an update, the existing topology can be a direct indication
of the number of splits that partition refinement requires for
convergence. Hence, we propose an efficient optimized splitter
that exploits the existing bisimulation.

The details of the new splitter can be presented as follows:
Given a partitionI during the process of partition refinement,
the number of old (overlapping) partitions inI is assumed to
be approximately the number of splits required to converge
to the final partition(s). The optimized splitter of partition
refinement (in Fig. 4,partition_refinement, Line 15) will
first split the partition that overlaps with the smallest number
of old partitions.

3. Optimization on cross nodes.A performance issue of the
hybrid algorithm is the minimization of cross nodesC (i.e., its
costC in Formulas (1) and (2)). Given an update, Procedure
istabilize may split the cross nodes from the Inodes of
someSCCs but subsequently, most cross nodes may be merged
with their Inodes before, if the update does not change the
minimum bisimulation much. Our next optimization aims at
reducing some unnecessary splits and merges of cross nodes.

The main idea is to “mask out” the cross nodes inSCCs
when applying Procedureistabilize. The bisimulation of
non-cross nodes are maintained byinsert without the cross
nodes. At the end ofinsert, an (unstable) intermediate
bisimulation is yielded. Then, we unmask the cross nodes and
minimize the intermediate bisimulation top-down again and
verify whether the Inodes of the unmasked cross nodes may
require splitting and merging. If the minimum bisimulation
does not change much, most cross nodes pass the verification
and no splitting and merging are ever required.

7 EXPERIMENTAL EVALUATION

This section presents a detailed experimental evaluation that
verifies the efficiency of the proposed hybrid algorithm and
the effectiveness of its optimizations.

Hardware and software. We ran our experiments on a server
with a Dual 4-core 2.93GHz CPU and 30 GBRAM running
Solaris OS. The hybrid algorithm was developed on top of a
previous algorithm [21], which was written inJDK 1.5. The
library for graphs isopenjgraph [31], which is also used in
previous work [21], to ensure fair comparison.

Data graphs.We used both synthetic and real-world datasets
in our experiments: (i) As in the previous work [21], we
used theXMark generator [32] to derive synthetic graphs to
illustrate various aspects of our algorithms. TheSCCs inXMark
are mainly composed of manyIDREFs of open_auctions
to persons and vice versa. In the test with various graph
sizes, the number of vertices/edges ranged from 168k/199k to
1.68M/1.97M and the number ofIDREFs ranged from 31k to
307k. Unless specified otherwise, we usedXMark with 168k
vertices to study various characteristics of our algorithms. We
remark thatXMark graphs often contain one largeSCC (that
contains many smallerSCCs). This is the reason why [21] can
maintain minimal bisimulations, whose sizes are similar tothe
minimum ones. To test the algorithm on various cyclic graphs,
we will specify some preprocessing onXMark to generate
update workloads. (ii) A real-world graph on bibliography
data up to Year 2002, denoted asdblp, was used. It contains
510k vertices, 784k edges and167 SCCs. The vertices of
dblp can be authors and publications. The reference edges
in dblp represent citations between publications. In some
experiments, we used somedblp graphs of various sizes by
extracting the last 5×x-th years ofdblp, by varyingx. (iii)
Another real-world graph on citation data [25], denoted as
citation, was used. It contains 45k vertices, 374k edges and
11 SCCs. The number of theSCCs in citation is somewhere
between the number in theXMark and dblp datasets. (iv)
The last real dataset we used was a social network dataset
called slashdot [33]. It contains 82k vertices and 948k
edges. Each vertex is a user, labeled withuser. An edge
represents friendship between users.slashdot has one large
SCC containing many smaller non-trivialSCCs. TheSCC has
71k vertices and 912k edges (i.e.,87% and 96% of all vertices
and edges, respectively).

Experiment 1: Reconstruction performance. To study
the runtimes of the hybrid algorithm, we invoked
bisimilar_cyclic on XMark graphs of various sizes
and compared them with partition refinement [29]. The result
is shown in Fig. 9(a). The figure shows that the hybrid
algorithm outperformed partition refinement, even in full
reconstructions. In particular, for the data graph with 1.68M
vertices, the hybrid algorithm was 24% faster. The reason
is that the subgraphs inXMark are not “very bisimilar” and
partition refinement takes many steps to converge.

Experiment 2a: Maintenance under single insertion.We
then performed an experiment on insertions. Given theXMark

with 168k/199k vertices/edges, we removed 500 edges ran-
domly and then inserted them. The cumulative insertion time
is reported in Fig. 9(b). Thex-axis is the number of insertions
executed and they-axis is the cumulative time ofx insertions.
Fig. 9(b) shows that the cumulative insertion time was linear
to the number of insertions. Moreover, the hybrid algorithm
always returned the minimum bisimulations (Fig. 9(c)).

We conducted a similar experiment ondblp andcitation,
i.e., real graphs with moreSCCs. First, we focused ondblp.
The hybrid algorithm took 11s to compute the minimum
bisimulation of dblp from scratch. Similar to the previous
experiment, we removed 500 edges randomly from the data
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Fig. 10. Effectiveness of the optimization techniques of the hybrid algorithm

graph and inserted them back. On average, each insertion
took only 0.63s. The cumulative insertion time is reported
in Fig. 9(d). The figure shows that the cumulative insertion
time was also linear to the number of insertions. Unlike the
XMark datasets, the sizes of the minimum bisimulations of
dblp decreasedas the edges were inserted (Fig. 9(e)). This
was becausedblp was relatively more bisimilar thanXMark
and bisimilar nodes were recovered as edges were inserted.
We note that the minimal bisimulation ofdblp returned by the
previous work [21] was 10% larger than the minimum one.

We then applied the hybrid algorithm oncitation. The
algorithm took 1.59s to compute the minimum bisimulation
from scratch. Similar to previous insertion experiments, we
removed 500 edges from the data graph and then inserted
them. Each insertion took 0.37s on average and the cumulative
insertion time is omitted as it also roughly linear to the number
of insertions. Unlike theXMark anddblp datasets, the sizes
of the minimum bisimulations ofcitation (roughly 10.4k
Inodes) did not change much throughout the 500 insertions.

We tested our algorithm onslashdot. The vertex has an
id and it can be considered as userid [33]. We assumed the

larger theid, the newer the user. We removedx% of vertices
of the largestids and their edges, and inserted their edges back
(as new users registered and added friends) in the ascending
order of ids. (For each new vertex, we inserted their edges
randomly.) We rangedx from 1% to 10% and consistently
obtained the following workload (shown in Fig. 9(f)) and
results: The update workload contained 40% of new edges
that did not modify theSCC and the hybrid algorithm finished
each of such insertion in 0.3s, as the non-SCC part (in terms of
edges) is only 4% of the entire graph. The remaining 60% of
the insertions led to a performance that was identical to that
of recomputation (i.e., 8s), since theSCC was large.
Experiment 2b: Maintenance under batch insertions.
We tested the performance of subgraph insertions and batch
edge insertions usingXMark, since we could have a better
control on generating batch insertions. First, we selected500
open_auction subgraphs randomly and removed them from
the XMark graph. Theopen_auction subgraphs were often
connected to theXMark graph via manyIDREF edges. These
edges, denoted asS, were used for batch edge insertions. On
average, each subgraph had 45 vertices and 44 edges. The
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cumulative insertion time is reported in Fig. 9(g).
The x-axis is the total number of edges of those subgraphs

to-be-inserted and they-axis is the cumulative insertion time.
The result shows that the insertion time was linear to the
total number of vertices. The slope was 11.2s per subgraph (4
vertices per second). In contrast, a full reconstruction took 39s.

For batch edge insertions, we used theIDREF edgesS, as
described above: We extracted 500 sets of edges fromXMark;
Each set contained 56 edges on average. We compared batch
insertion (i.e., insert_batch) and individual insertion (i.e.,
insert). The result is shown in Fig. 9(i). The throughputs
of insert_batch andinsert were 8.97 and 0.72 edges per
second, respectively.insert_batch is about 12.5 times faster
than insert. The time for the insertions by reconstructions
was about 19,500s andinsert_batch is more than 800 times
faster. Whileinsert_batch is slower than the maintenance
of minimal bisimulation [21], [21] requires occasional recon-
struction andinsert_batch does not.

Similarly, we appliedinsert_batch on slashdot with
500 edge insertions containing 347 new users. We ob-
tained a throughput 34.3 edges (23.8 nodes) per second.
insert_batch is 372 times faster than full reconstructions.
This verified that batch insertions with the hybrid algorithm
can handle rapid updates in real time.
Experiment 3: Optimization effectiveness.We next present
an experiment on the synthetic datasetXMark and the largest
real datasetdblp that verified the effectiveness of each
optimization. Due to space limitations, the experiments on
citation andslashdot are placed in Appendix A.

(1) First, we applied partition refinement in
bisimilar_cyclic with and without partial refinement.
The result is reported in Figs. 10(a)-(b). Fig. 10(a) shows
that the performance improvement from the optimization on
XMark increased as the graph size increased. The result from
dblp (Fig. 10(b)) shows that the optimization only required
roughly 11% of splits required by the classical splitter.

(2) Second, we verified the effectiveness of our splitter; the
results are shown in Figs. 10(c)-(d). The figures show that our
splitter always converged earlier than the classical splitter. In
XMark, out splitter required up to 30% fewer steps to converge
(Fig. 10(c)). In fulldblp (i.e., with 510k vertices), our splitter
offered up to 10% fewer splits (Fig. 10(d)).

(3) Third, we tested the optimization on cross nodes, where
the optimalk’s had been accurately determined by the next
experiment on the analytical model (Section 4.2). We per-
formed the insertions onXMark as specified before. As shown
in Fig. 10(e), the total time for 500 insertions with the opti-
mization was approximately 62% of the time taken using the
non-optimized version. Fig. 10(f) shows that the optimization
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Fig. 12. Maintenance and query performances of minimum and
minimal bisimulations on DBLP

on cross nodes offered roughly 5% improvement ondblp.

Experiment 4: Accuracy of the cost model.We present
the experimental results on the accuracy of the analytical
model presented in Section 4.2. We compared the actual
runtimes of our implementation and those determined by
the analytical model onXMark and dblp. The results are
presented in Figs. 11(a)-(b). The figures show that thek with
the optimal performance of the hybrid algorithm on the three
data graphs were correctly predicted. That is, the trend of the
actual runtimes and the predicted ones were consistent. Our
experimental results reveal that when we used the generalized
reduced graphs, smallk’s would be sufficient. However, there
were clear gaps between the runtimes and the predicted times.
The reason is that the implementation involved manipulations
of many data structures. These implementation specifics were
not modeled, and they introduced some non-trivial runtimes.

Experiment 5: Maintenance and query performances.
Finally, we illustrate the effects of maintenance and query
evaluation with bisimulation with theDBLP dataset. We gen-
erated 500 random insertions that involveSCC. That is, even
one edge was inserted, the minimal and minimum bisim-
ulation may differ. We assume that the previous method
reconstructed the bisimulation after every 100 insertions.
Moreover, we generated 1000 reachability queries randomly
between nodes involvingSCCs. Queries were evaluated via
a depth-first traversal of the bisimulation. Fig. 12(a) shows
the maintenance times. The reconstruction of previous work
led to clear increases in the maintenance time. At the first
glance, individual maintenance did not appear efficient. When
the batch maintenance was used, for example, a batch of
insertions containing roughly 50 insertions on average, it
was already clearly more efficient than the previous work.
One may be tempted to use the minimal method with less
frequent reconstructions. However, queries would be evaluated
on larger bisimulations. Fig. 12(b) shows the total query times
between time of the minimal and minimum bisimulations.
The minimum one consistently produced smaller query times
than the minimal one. In addition, the minimal bisimulation
sometimes led to significantly longer query times.
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8 CONCLUSIONS

We have proposed a novel incremental maintenance of the
minimum bisimulation of cyclic graphs with respect to an
edge insertion/deletion or a batch insertion/deletion. Wehave
proposed a hybrid algorithm that takes advantage of the
two existing classes of bisimulation minimization algorithms,
namely merging algorithms and partition refinement. To our
knowledge, the hybrid algorithm is the first incremental main-
tenance algorithm that guarantees minimum bisimulation for
cyclic graphs. We have proposed a generalization of reduced
graphs and an analytical model to facilitate an optimal perfor-
mance from the hybrid algorithm. We have complemented the
hybrid algorithm with three optimizations. We have presented
a detailed experiment on both synthetic and real graphs
that verified the efficiency of the hybrid algorithm and the
effectiveness of our optimizations. We are investigating to
incorporate the recent external algorithm for bisimulation [9]
into our algorithms.
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APPENDIX A
SUPPLEMENTARY EXPERIMENT

Due to the space constraint, we present the experiment on the
optimization techniques on the two real datasetscitation

andslashdot in this appendix.
We applied partition refinement inbisimilar_cyclic

with and without partial refinement oncitation and
slashdot and reported the results in Figs. 13(a)-(b).
Fig. 13(a) shows that the optimiation oncitation reduced
the runtime by approximately 41%. Fig. 13(b) shows that this
optimization offered a marginal improvement onslashdot.

Regarding the optimization on the splitter, incitation,
the new splitter required 16% fewer splits compared to the
classical splitter (Fig. 14(a)). Regardingslashdot, the new
splitter often reduced the number of splits by 8% (Fig. 14(b)).

Finally, we tested the optimization on cross nodes. Fig. 15(a)
shows that the optimization on cross nodes offered roughly
24% performance improvement oncitation. When tested
with slashdot, the performance of the optimized hybrid
algorithm was 2.25 times better than that of non-optimized
version (shown in Fig. 15(b)). This is because the updates
did not often change the bisimulation of theSCC and theSCC
of slashdot and therefore the number of cross nodes were
large.

APPENDIX B
CORRECTNESS OF BATCH UPDATES

Proposition 2.1: Given an insertion of a subgraphg and the
existing minimum bisimulationB of a graphG, whereg is
connected toG via an edge(n1, n2), the bisimulation graph
returned byinsert_subgraph is minimum.

Proof: First, partition_refinement(g) returns the
minimum bisimulationb of g. Without (n1, n2), g andG are
disconnected andb and B are their minimum bisimulation,
respectively. By Defintion 3.6,b∪B is the minimum bisimu-
lation of g ∪ G. Next, consider the insertion of (n1, n2). By
Theorem 5.2,insert is correct and the maintenance ofb∪B

in response to the insertion of a single edge(n1, n2) into g∪G

is minimum.

Proposition 2.2: Given a batch of edges ofEδ of a graph
G and its minimum bisimulationB, the bisimulation graph
returned byinsert_batch is minimum.
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Fig. 13. Effectiveness of partial refinement of the hybrid
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Proof: The proof can be established by applying
Lemma 5.1 and Theorem 5.2 in a simple case analysis and
mathematical induction on the size of|Eδ|, where|Eδ| is the
batch of edges to-be-inserted.

Hypothesis:The istabilize of insert_batch returns a
stable bisimulation when|Eδ| ≤ n.

Base case:When |Eδ| is 1, the hypothesis is true due to
Lemma 5.1.

Inductive step: Suppose the hypothesis is true up to|Eδ|
= m. Next, consider |Eδ| = m + 1. Denote thatEδ =
{e1, e2, ..., em, em+1}.

Case 1: em+1:(n1, n2) does not directly causeIn2
unsta-

ble. Then, In2
is not added to the queuesS and Q by

insert_init. If In2
causes the bisimulation unstable, it must

be only due to the insertions ofe1, e2, ..., or em. Due to the
hypothesis assumption,In2

is stabilized byistabilize.

Case 2: em+1:(n1, n2) directly causesIn2
unstable.In2

is
added to the priority queuesS and/orQ by insert_init.
We exploit the following two facts in our arguments.

• Fact (1): istabilize stabilizes (unstable) Inodes by
splitting. It does not merge Inodes. We note that stable
Inodes will not be split into unstable Inodes.

• Fact (2): In each split of an InodeI, we denoteI is split
into an Inode setI. I replacesI and is maintained inS
and/orQ (Lines 12 and/or 19 ofistabilize).

The Inodes in the priority queueQ are maintained in
topological order. The unstable ancestors ofIn2

in Q due
to insertions ofe1, e2, ..., or em are stabilized, by induction
hypothesis.
(i) SupposeIn2

has been split due to insertions ofe1, e2, ...,

or em. By Fact (2),In2
is replaced byIn2

and maintained in
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S and/orQ. If some of the Inodes inIn2
are not stabilized,

they are detected and stabilized. By Lines 09-15 and 19,In2

and its descendants are stabilized.
(ii) Otherwise, suppose thatIn2

is not split due to other
insertions.In2

and its descendants are stabilized as ininsert,
by Lemma 5.1.

The above two cases are exhaustive. Therefore,
istabilize returns a stable bisimulation forEδ =
m + 1. The hypothesis is true form + 1. Thus, by induction,
istabilize of insert_batch returns a stable bisimulation
for all |Eδ| ≥ 1.

By Theorem 4.2, the stabilized bisimulation returned by
istabilize is minimized. Therefore,insert_batch returns
the minimum bisimulation ofG after the insertions ofEδ.

APPENDIX C
COST MODEL FOR INCREMENTAL MAINTE-
NANCE ALGORITHM

To further show the performance differences between in-
cremental methods, we derive a model for the incremental
maintenance algorithms over a sequence ofn insertions. For
presentation simplicity, we useM ’s to denote themethods
being discussed. Specifically, we refer the maintenance of min-
imal bisimulation asMY [21], our maintenance of minimum
bisimulation asMmin and the batch update version ofMmin

asMB . Moreover, our model does not consider recomputation
per update as it is inefficient by far when compared to the
mothodsMY , Mmin andMB .

We assume that the size of minimal bisimulation gradually
deviates from that of minimum bisimulation, in practice. We
assume the average query time differences between minimal
and minimum bisimulations are∆’s. The query time on the
initial minimum bisimulation ist. The query time for the
minimum bisimulation after thei-th insertion T (i) is ti +
Σi

j=1 ∆j . Based on the assumption that the average query
times between minimal and minimum ones deviate modestly,
we assume∆1 = ∆ and ∆i = i × ∆. Finally, we remark
that if the minimal bisimulation deviated from the minimum
one drastically because of some updates, the advantages on
average query time ofMmin or MB would be more apparent
than those ofMY .

Denote the number of queries during then updates isc ×
n, where c can be viewed as the query rate relative to the
update rate. Assume further the queries arrive evenly over the
period of then updates for the ease of analysis. The average
maintenance time for minimal bisimulation isY whereas that
for minimum bisimulation isI.

The time for processing then insertions andc × n queries
of MY is: n × Y + c × Σn

i=1T (i). The time for theMmin

is: n × I + c × Σn
i=1ti. Hence, the following condition holds

whenMmin is more efficient thanMY :

n × Y + c × Σn
i=1

T (i) ≥ n × I + c × Σn
i=1

ti (3)

By applying some simple arithmetics, we have
c

n
× Σn

i=1
∆i ≥ I − Y

Finally, we have the following:

c × (n − 1)

2
× ∆ ≥ I − Y (4)

We may further generalize Formula (4) to the algorithm for
batch insertions. DenoteB to be the size of batch updates. For
analysis simplicity, we assumen is divisible byB. Denote the
time for batch updates isI(B). Then, the time for processing
the n insertions andc × n queries withMB is:

n/B × I(B) + (n − n/B) × Y + c × n/B × ΣB
i=1

T (i) (5)

Similarly, we can derive an inequality forMB to be more
efficient thanMY :

c × B(n − B)/2 × ∆ ≥ I(B) − Y (6)

Discussions.We can make two observations from the models
of Formulas (4) and (6). Firstly,Mmin or MB is more efficient
thanMY when the query performances gained from using the
minimum bisimulation (LHS) are larger than the additional
time needed to maintain the minimum bisimulation (RHS).
Therefore, the faster the queriesc are, the more likely the
inequalities of Formulas (4) and (6) are true. Secondly,I(B)
increases slightly withB. When B is large (but smaller
than n/2), Formula (6) is more likely to be true.MB is
relatively more efficient. Thirdly, we remark thatMY requires
reconstructions occasionally and the minimal bisimulation is
not available during reconstructions. Such reconstructions are
eliminated by using eitherMmin or MB .


