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Abstract—There have been numerous recent applications of graph databases (e.g.,the Semantic Web, ontology representation, social
networks, XL, chemical databases and biological databases). A fundamental structural index for data graphs, namely minimum
bisimulation, has been reported useful for efficient path query processing and optimization including selectivity estimation, among many
others. Data graphs are subject to change and their indexes are updated accordingly. This paper studies the incremental maintenance
problem of the minimum bisimulation of a possibly cyclic data graph. While cyclic graphs are ubiguitous among the data on the Web,
previous work on the maintenance problem has mostly focused on acyclic graphs. To study the problem with cyclic graphs, we first
show that the two existing classes of minimization algorithms — merging algorithm and partition refinement — have their strengths
and weaknesses. Second, we propose a novel hybrid algorithm and its analytical model. This algorithm supports an edge insertion
or deletion and two forms of batch insertions or deletions. To the best of our knowledge, this is the first maintenance algorithm that
guarantees minimum bisimulation of cyclic graphs. Third, we propose to partially reuse the minimum bisimulation before an update in
order to optimize maintenance performance. We present an experimental study on both synthetic and real data graphs that verified the
efficiency and effectiveness of our algorithms.

Index Terms—Cyclic graphs, minimum bisimulation, incremental maintenance, graph indexing, evolving graphs and graph algorithms.

g

site

1 INTRODUCTION open_auctons

Graph databases have a wide range of recent applicatians,
the Semantic Web, ontology representation, network tepolo
gies, XM, chemical databases and biological databases. To
optimize query processing on large graphs, indexes have bee
proposed to summarize the paths of data graphs. In paricula
many indexing schemes,g.,[1]-[9], have been derived from

a notion ofbisimulationequivalence of nodes [10]. In addition e~
to indexing, bisimulation has recently been used to support P'*/\\ , ‘}.,!ff‘”""‘e
selectivity estimation of structural queries [11]-[13]. a6 8 000 faee’ {

To illustrate the applications of bisimulation, we presant ‘

simplified sketch of a popular benchmark data graph, namely
XMARK, in Fig. 1(a). XMaRK is a synthetic electronic
auction datasetopen_aucti on contains an author, a seller
and a list of bidders, whose information is storegér sons; Fig. 1. (a) A simplified XM ARk data graph; and (b) A sketch of
person in turn watches a fewopen_aucti ons. To model a bisimulation graph of XM ARK

the bidding and watching relationshigsen_auct i ons ref-

erencepersons and vice versa. From the perspective Ql¢ o en auctions. We can evaluate on the bisimulation

indexing of path queries, two nodes of a data graph aie,on (Fig. 1(b)), as opposed to the data graph, and retrieve

bisimilar only if they have the same set of incoming pathgne gata nodes i For query efficiency, it makes sense to
A sketch of the bisimulation graph of XMRK is shown in gm0y theminimumbisimulation,i.e., the smallest index.

Fig. 1(b). (More formal examples are given after the relévan A pressing issue of graph databases is that data graphs are
definitions are presented.) In the sketched bisimulati@plgr very often subject to small and/or rapid updates [14], [15].

bisimilar nodes are placed in a partition, denoted/asThe ; .

. : ! - For example, in the context of social networks, users/pages

bisimulation graph is often smaller than the original data . .
and friendships are modeled as nodes and edges, respec-

graph, which makes it an efficient index. Consider a queﬁ(/ely. In 2010, Facebook [16] has roughly an increase of

cho g - . eight new users per second, on average. Top growing pages
e B. oi, J. Deng, J. Xu and H. Hu are with the Department of Qaterp
Science, Hong Kong Baptist University, Hong Kong. have, on average, one new fan every tw_o seconds [17]. In
S. S. Bhowmick is with the School of Computer Engineeringyazy PUBCHEM [18], a public database of chemical structures, the
Technological University, Singapore. increase in chemically uniqgue compounds during 2006 and
2011 was, on average, 12k compounds per day. In a popular

watches
watch

/sitel/open_auction/seller that selects alkel l ers




bibliographxmL dataset®BLpP [19]), the increase in nodes hasndividual algorithm. The main idea of the hybrid algorithm
been, on average, 6.7k per day, during the last 9 years. Thissthat given an update, we use partition refinement to handle
real-world examples indicate large graphs may be subject36Cs and the merging algorithm to handle the remaining nodes
frequent small updates. and optimize the nodes on the borderSaiCs.

Efficient incremental maintenance algorithms for propagatl) First, we show that regarding cyclic graphs, merging algo-

ing frequent small updates are desirable for three reasofigims require a space 6t of the graphs’scC in computing

(1) Incremental algorithms upon small updates have knowfie minimum bisimulation. We then present an efficient hybri
to be more efficient than full recomputation in many applialgorithm that guarantees minimum bisimulations (Sectin
cations. Classical survey on incremental algorithms can bgch a guarantee is absent in previous algorithfite al-
found in [20]. (2) The quality 4 k.aefficacy) of bisimulation gorithm is presented with edge insertion (Section 5.1) and
degrades over updates if it is not minimized [21]. When bisinits extension on edge deletion (Section 5.2). The support of
ulation is used as an index, the query performances degrag@graph and batch updates are also presented (Section 5.3)

accordmg_ly. 3) .Durlng reconstruction, the b|3|mulgtlm (2) A unique issue of the hybrid algorithm is that the parti-
takep offlime, Wh.'Ch,(,:an be unaccep.table to applications th{?ons returned by partition refinement and merging algarith
require high availability, such as social networks. (respectively) may be merged in order to yield the minimum

Recently, the maintenance problem of bisimulation hagsimulation, which requires additional computation. e
received a renewed interest from database research [24re our second contribution is to provide a generalizatb
[24]. For example, recent works by Fan et al. [22], [23}he cyclic graph representation. This generalizationgive a
consider efficient bisimulation maintenance in the presengay to specify the subgraphs to be handled by the two algo-
of queries. Few previous works [21], [24] have address@fhms. To determine the optimal performance from the two
the maintenance problem of the minimum bisimulation ofigorithms, we propose an analytical model for determining
acyclicgraphs. While one may argue to simply apply previoug,e optimal hybrid algorithm (Section 4.2).

techniques to cyclic graphs, they may return only the milhimfx3 L .
- . . . ) Furthermore, we propose three optimizations on the hybrid
bisimulations for cyclic graphs [21]. In practice, data gra algorithm by utilizing the minimum bisimulation prior to an

are often cyclic,e.g., social networks and citation networks - )
. . . L . —update. Through our initial experiments, we observed that
[25]. As shown in our experiments, the minimum bisimulatio . . - .
the topologies of the minimum bisimulation before and after

of a real citation network BLP) [19] is 9% smaller than : . . .
. . . ome random edge insertions/deletions are sometimes very
the minimal one. In this paper, we present the first study . ) . . ) .
milar, if not identical. This motivated us to reuse some

on bisimulation maintenance algorithms of cyclic graphs that . . - o . - .
- . : ; existing minimum bisimulation to optimize the maintenaonte
guarantee minimum bisimulation, regardless of queries

- L . ; the bisimulations o6CCs. Specifically, we propose (i) partial
The existing work on maintaining bisimulation can IO‘fJartition refinement, (ii) a new splitter for partition regiment

diyided into wo classesmerging algorithmand pa}rtition .and (iii) a reduced computation between nodes outside and
refinement However, there are some weaknesses in applyifiLije scocs (Section 6). The first two optimizations are

such work to cyclic graphs. First, merging algorithms fail t ;00 apie to previous partition refinement algorithms levhi

determine the minimum bisimulation of cyclic graphs. Eacfhq |45t optimization is specific to the hybrid algorithm.

merging step often processes nodes by pairs, which is not ) _ _

sufficient to determine the bisimulation within and betwee§14) We condgcted a comprehensive expenmemal stu.dy with

strongly connected componentSCCs). Contrarily, we can bot.h. synthetic and rgal data.sets,_pres.ented in Secuoq 7.1t
verified that our hybrid algorithm is efficient; the analytic

easily establish that a node of &tTC can be bisimilar to ) N ) .
a node of anothescC only if the two SCCs are bisimilar (see model is accurate, and the optimizations are effectiveceSin

Section 4). Intuitively, the bisimulation of the nodes i£Cs our algorithm maintains the minimum bisimulation, our algo
are determinedogethér rithm always returns smaller (if not the same) bisimulagion

L . ' compared to previous work.
Second, while it is known that partition refinement produces . . .
L o . ) o The rest of the paper is organized as follows. In Section 2,
the minimum bisimulation of cyclic graphs, it is more sul&ab . S :
) S ; we discuss related work. The preliminaries and notatioes ar
for full construction. Its application to the maintenancelp ; ; . . .
. - . : . then presented in Section 3. Section 4 details the hybrid
lem is rather limited. The reason for this is that it rebuilde : . .
algorithm. We present the overall incremental maintenance

entire updated minimum bisimulation from scratch. Althbug : . :
. .. ~“algorithm and the support of subgraph/batch insertions or
in the worst case, an edge update may affect the minimu ) . . SRR )

eletions in Section 5. Three optimization techniques are

bisimulation arbitrarily, in practice, an update may oftdfect proposed in Section 6, and an evaluation of the experiment

the bisimulation locally. Therefore, partition refinemean be . : :
: PSR T - . is reported in Section 7. Section 8 concludes the paper.
relatively inefficient in maintaining bisimulation.

Contributions. In this paper, we proposa novel hybrid
algorithm of the merging algorithm and partition refinemen? RELATED WORK

to maintain the minimum bisimulation of cyclic graphs. Thé&xisting bisimulation minimization and maintenance algo-
hybrid algorithm supports thénsertions/deletions of edgesrithms can be roughly categorized into two classes, namely
and subgraphsThe hybrid algorithm takes advantage of thenerging algorithmsand partition refinement algorithmsTwo

two algorithms and overcomes some of the weaknesses of fhevious merging algorithms [21], [24] have been proposed f



incremental maintenance of tha@nimalbisimulation of cyclic considered bisimulation as a compressiorXe repositories
graphs. The algorithm proposed by Yi et al. [21] contains far efficient query processing. Bisimulation has also been
split and a merge phase. Upon an update to the data gragthopted for path query selectivity estimatieng,[11], [12]).

the bisimulation graph is split to a correct but non-minimah study on bisimulation maintenance beneéitisof the above-
bisimulation of the updated graph. The bisimulation graph mentioned applications.

then minimized in the merge phase. For acyclic graphs, this

algorithm produces the minimum bisimulation of the updated PRELIMINARIES AND NOTATIONS

graph. If the graph is cyclic, it only returns a minimal bisim Thjs section presents the preliminaries, notations andieefi
lation. Since Yi et al. [21] merges pairs of nodes iteragiviel  tions required by this work.

the merge phase, it is not sufficient to determine the minimugn1 Data Graphs

bisimulation of SCCs. When their algorithm encountegeCs, ~—~ ) )
the current merging step simply terminates. Thus, to Suppg}eflnltlon 3.1: A data graphls a rooted directed labeled graph
cyclic graphs, the minimum bisimulation is occasionally reZ(V, £, 7, p, ), whereV is a set of nodes and V' x V/
computed from scratch. Saha’s work [24] can be considerig@ Set of edges; € V' is a root node ang : V' — 3 maps

as a follow-up to Yi et al’s work. Saha proposed a spli@ Vertex to a label, andl is a finite set of labels. L
merge-split algorithm with a rank flag f®CCs, which was  In the case of unrooted graphs, we may simply create an
originally proposed by Dovier et al. [26]. Similar to the eth artificial root called “root” to connect to every node of the
previous work, Saha’s algorithm also maintains a minimgraph. For succinctness, we may simply denote a data graph
bisimulation. However, there is neither an experiment repas G(V, E) whenr, p or ¥ are irrelevant to our discussions.
nor an implementation for comparisons. To facilitate the discussions on algorithms, we assume some

The claim on the support of cyclic graphs from theuxiliary functions of nodes. Given a data nade.par ent ()
work [21], [24] is based on a direct application of algoritimand v.si bl i ng() return the parents and the siblings of
for acyclic graphs. Thus, minimum bisimulations are natspectively. For simplicity, we often ugé&| to denote the
guaranteed. A recent work by Deng et al. [27] on minimalumber of verticesV'| of the graph, which is also known as
bisimulation maintenance only focused on optimizationéss the order of the graph, unless otherwise specified.

The partition-refinement algorithm proposed by Kaushikycjic graphs. Since our work focuses on cyclic graphs,
et al. [28] may be seen as a variant of Paige and Tarang review some relevant definitions. #trongly connected
algorithm [29], i.e., a construction algorithm. Kaushik et componeni(ScC) in a graphG(V, E) is a subgrapha (V"
al. [28] proposed their own split to handle edge changes, a@d), V' CV,E'CEand @1, v) € E = v € V' Avy €V,
this has been extended to maintain local bisimulation [BRIT \yhere the nodes i’ can reach each other i@’. The SCCs
experiment showed that they produced a bisimulation thatdg 5 graph can be determined by classical graph contraction
always within 5% of the minimum bisimulation. Later expery|gorithms €.g., Gabow’s algorithm [30]) with a runtime
iments showed that smaller bisimulations can be produced @¥|V|+|E|).

Yi et al. [21], which we compare through experiments. Graph contraction has been a classical preprocessing tech-

Recently, Fan et al. [22], [23] proposed incremental grafique for cyclic data graphs, which we exploit to optimize ou
pattern matching and query preserving bisimulation-basghyosed hybrid algorithm. Intuitively, given a cyclic gra
compression. The compressed graph is lossless only Ee'a_EYaph contraction reduces &aC into a supernodeteratively
to some class of queries, in particular, reachability @eriyni| a directed acyclic graphDAG) is obtained. The graph
and graph patterns. In our work, we do not take queries @symed by graph contraction is often called tresluced
input. Hellings et al. [9] focuses on external algorithm f0prapn The nodes that are not supernodes are sometimes called

bisimulation of DAG. Cyclic graphs are not considered. Thejnplenodes. We present some relevant definitions below.
maintenance problem has been left as a future work.

Bisimulations [10] have recently been revisited due tortheP€finition 3.2: A node n of an scC G'(V',E") of a graph
extensive applications on databases. There has been afhog((y;E) is anexitnode if t/here_z exists an edge. (1) wheren
work on indexing for path queries, which in a nutshell, summé& V> 71 € V andny ¢ V7. nis an/entry node; if there exists
fizes a data graph using bisimulatieng.,[1]-[3]. The seminal " €dge ko.n) wherenoeV, nogV”’ andneV’. =
work is 1-index [1], which adopts bisimulation as an index » Bisimulation
for regular paths. In practice, 1-index [1] can often be darg
A notion of local bisimulation, namely-bisimulation [2], has
been proposed to reduce index size, although some path infagfinition 3.3: Given two subgraphé: (V1, E1, r1, p1) and
mation may be lost. Local bisimulations are combined/jdineG2(V2, E2, r2, p2), anupward bisimulation~ is a relation of
to “recover” such information or certain statistical proes V1 and Va:

(e.g, uniform distribution) are assumed. To balance queryy v, € vi, vs € Va, v1 ~ vy —

performance and index size, a follow-up work [3] proposed to Vv (v1, v1) € E1, 3 (v), v2) € Ea, v) ~vj A

adaptively adjust thé in k-bisimulation. Our techniques can ¥ (v3, v2) € B2, 3 (v, v1) € B, o ~ vyt A pr(vr) = pa(va).

be extended to support local bisimulation with straighvifard Two subgraphsG; and G, are upward bisimilar if an
but tedious modifications. Due to space constraints, wemptupward bisimulation~ can be established betweén and
focus on bisimulation alone. Some previous studies [7], [&]-. O

Next, we present the relevant definitions of bisimulation.



We make two remarks before proceeding further. First, wighown in Fig. 2(d). Fig. 2(f) is the minimum bisimulation of
some classic optimization, the minimum bisimulation can d&g. 2(a). O
computed inO(| Ellog(|V|)) time [29]. Second, Definition 3.3
presentsupward bisimulation in the sense that two nodes cag.3 Bisimulation Minimization Algorithms
be bisimilar if they have the same label and all of theirents . . . o
are bisimilar. In this paper, we present our techniques wi ext, we shall provide a brief review of the main ideas of the

upward bisimulation only and skip other notions of bisimula" 2 classes of b|§|mglat|on minimization algorithms usthg

tion (e.g.,downward bisimulation used in [7]) which can beexample shown in Fig. 2, which illustrates the strengths and
supported by some minor extensions of this work. Therefor\g, . .
we may use the terms bisimulation and upward bisimulation Fig. Zf) shov_vs a fycl!chdata grazplh. 'I'éhanltljc nlodes forrrr]]
interchangeablyDefinition 3.3 can be paraphrased in terms g S°C A merging algorithm €.9., [21]) initially places eac

paths (Proposition 3.1), which often simplifies our distuss. node in a s.ingle partitiori,e., an Iner (Fig. 2.(.b))' Assume
that a merging algorithm merges pairs of partitions top-tlow

Proposition 3.1: Two nodes are upward bisimilar if the setgt merges the twaz nodes under (Fig. 2(c)). The merging
of the incoming labeled paths of the nodes are the samel  z|gorithm does not merge thenodes, because theiparents

A set of bisimilar nodes is often referred to as equiv- have not been determined bisimilar. Fig. 2(c) is returned,
alence partitionof nodes or simply apartition. Hence, a Which is a minimal bisimulation. As discussed in Example 3.2
bisimulation graph can be described as a set of partitio8erging more partitions would result in unstable partiion
Since the bisimulation is often used as an index graph, tffdg. 2(d)). Intuitively, given any fixed merging algorithm
partitions are sometimes referred toiadex nodesor simply With a limited space budget, at a particular merging step on

Inodes whereas the nodes of the data graph are referred tot&8 Inodes,e.g, I,, and I, in Fig. 2(c), it is possible that
data nodesDnodesor simply nodes some bisimilar parents of,, and I, are not determined or

To distinguish between the notions of minimal and ministored. This makes it inefficient to determine the minimum
mum bisimulations, we present the following definitions. ~ bisimulation using merging algorithms.

In contrast, a partition refinement algorithre.q, [29])
initially places all nodes in a single partition (Fig. 2(dj)then
refines (splits) existing partitions until the partitione atable
(Figs. 2(f)). Fig. 2(f) is the minimum bisimulation, which
is 38% smaller than the minimal bisimulation in Fig. 2(c).
Example 3.1:We illustrate the definition of stability with the One may further observe that partition refinement is, by its
example shown in Fig. 2. The data graph and a partitioning @@ture, non-incremental. It builds the minimum bisimuwati
its nodes are shown in Figs. 2(a) and 2(d), respectivelyyevhdrom scratch, which is costly for a single update.
the dotted ovals denote partitions. (i) L&t be the partition  Finally, we note that the relative performance of partition
with the b nodes andX; and X, are the partitions of the refinement and merging algorithms depends on how bisimi-
nodes.X; is not contained in the children of the Dnodes ifar the graph is: Suppose most subgraphs are non-bisimilar.
I, and thus,X; is unstable. SimilarlyX, is unstable; (ii) Let Partition refinement would take many splits to converge; on
I, be the parition with thez nodes.I; is contained in the the other hand, suppose most subgraphs are bisimilar. Mgrgi
children of the Dnodes af,. Thus,I; is stablew.rt. I,. [ algorithms would require many merging iterations.

Definition 3.4: Given two partitions of DnodeX and I, X
is stable w.r.t.I if either (i) X is contained in the children of
the Dnodes in the partitioh or (i) X and the children of the
Dnodes inI are disjoint. OtherwiseX is unstable. O

Definition 3.5: Given a bisimulationB of a graphG, B is
minimalif for any two equivalence partitions, J € B, either 4 BISIMULATION OF CYCLIC GRAPHS

(i) the Dnodes in/ and.J have different labels, or (i) merging 14 phegin our investigation, we show that it is often ineffitie
I'and.J results in some partitioi” where’ is unstable. [ 5 extend existing merging algorithms to maintain the mini-

It is worth noting that the notion of minimality is definedmum bisimulation.
with respect to the algorithm that computes the minimal Merging algorithms for bisimulation minimization are it-
bisimulation, as stated in Condition (ii) of Definition 3./n erative in nature. The current merging step of Inodes in
comparison, minimum bisimulations do not assume any sEemMeSCCs may affect and depend on the merging of some
cific minimization algorithms. It is known that the minimumlInodes in otheiSCCs. We encapsulate the iterative logic of a
bisimulation of a graph is unique [21]. merging algorithm in a functiom. In each iteration,A(I,
1) computes bisimulation between a pair of partitidnsand

Definition 3.6: A bisimulation B of a graphG is theminimum . For clarit SA(C) to denote th licati £ th
bisimulation if B contains the minimum number of partitions, 2 or clarity, we used((;) to denote the application of the

among all possible minimal bisimulations 6f. O algorithm on the gr"’?p.h' - . .
To compute the minimum bisimulatior,(G) requires much

Example 3.2: With respect to the data graph in Fig. 2(a)information about the to-be-merged Inodes to be maintained
Figs. 2(c) and 2(f) show its two possible minimal bisimand this is often infeasible for maintaining real-world jgjna.
ulations. Merging of any pairs of partitions with the sameélence, existing merging algorithms opt not to return theimin
label results in unstable partitions. For example, mergihlg mum bisimulation for cyclic graphs. Specifically, we forizal
partitions ofb nodes of Fig. 2(c) results in unstable partitionghe memory requirement ol in Theorem 4.1.
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Fig. 2. lllustration of merging algorithm and partition-refinement algorithm
The intuition that determining the minimum bisimulation of
acyclic graphs is strictly simpler is because there is a-topo
logical order of nodes. Merging algorithms can exploit this

s ordering, which determines when the bisimulation between
e P e, nodes is no longer needed for the computation of other nodes
. (2) A cyclic graph G with an SCCS  (b) The minimum bisimulation of G and can be safely removed from the algorithms’ runtime
Fig. 3. The cyclic graph used in the proof of Theorem 4.1 stack/memory. Such ordering is absent in cyclic graphs.

In comparison, while partition refinement can determine the
minimum bisimulation, it is not incremental. By definition,
partition refinement starts with a single partition and apl
o refinement recursively, where existing bisimulation is mse¢d.

Proof: By definition of 2, we need to show that there |, response to this, we propose a hybrid minimization
exists constantsandk such that for all.S| > k, A(S) requires  gigorithm for bisimulation in Section 4.1. An analytical de

¢ x | S| space. . of this algorithm is detailed in Section 4.2.
We establish the theorem with the example graph shown

in Fig. 3(a). The graph contains a single spectalC S. 4.1 Hybrid Minimization Algorithm

Specifically, the graph has a roet r reaches the partitions ;g section presents our hybrid algorithm,
I, and I3 via the same kind of edge. In additiofi,contains y; sj nj | ar _cyclic, which is a crucial ingredient of our
two (overlapping) cycles: b, Ion—2, -, I, Is, T2, Ion) @nd  jncremental maintenance algorithm. The algorithm intentss
(Ion, Ian—1, « I1, I5, I3, I5,). For simplicity, we assume that hartition refinement foisccs and the merging algorithm for
each partition/ contains one node initially. Furthermore, we,cyclic subgraphs. The strength of partition refinemenias t
assume that the minimum bisimulation of Fig. 3(a) is the ong can determine the minimum bisimulation even for cyclic
shown in Fig. 3(b). o o , graphs. Therefore, we apply partition refinement SECs.

To compute the minimum bisimulation, in runtimé&,must o the other hand, merging algorithms are more natural for
determine if Inodes/, and I3 are bisimilar, denoted asicremental computation and are therefore applied to the
A(Is, I3) (i.e., whether, and I3 are contained in a single subgraphs that are not part of aggcs.
partition in the minimum bisimulaton). By Definition 3.3, The pseudo-code is presented in Fig. 4, which serves as the
the bisimulation relationships of the parents bf and I3 pasjs for our analysis and optimization techniques. Thetinp
are needed to determind(l,, I3). Therefore,A(l4, I5) IS of pj similar_cyclic is a reduced grapti of a data graph
necessary ford(ly, I3). Applying this argument recursively, . and the output is the minimum bisimulation 6f,. Its
we need A(lzi, Izi+1), for all @ < [2, n-1], to determine gppjication on updates is detailed in Section 5.

A(I2, I3). Importantly, since the partitionss are in anSCC,  The pseudo-code can be described as follows. It traverses
A(I2, I3) is, in turn,necessaryo computed(ly;, Izi+1) forall  the reduced graph top-down (in topological order, as in &ine
i's as well. The same argument can be applied 6y, I2i+1) 01 and 08). We skip the pseudo-code for traversal as it is
for all 7's. _ straightforward. The nodes that are ready for processieg ar

Let ¢ = 1. That is, A(S) can use|S| space.A(I2;, I2i+1) denoted agy). We process the supernodgs(i.e., SCCs) and
for all i’s can be determined together and the minimufpen the simple noded’ = Q — S, where the simple nodes are
bisimulation ofS can be obtained. However, éf< 1, then at simply the Inodes that are not involved in aggCs. We use
any merging step of any pair of partitiond, does not have partition refinemenpartition_refi nement to compute the
the necessary information to conclude whether they belongdinimum bisimulation between and among the Inoifeside
the same partition in the minimum bisimulation. O supernodesS (Lines 04 and 10-18). Specifically, we create

It may be worth-noting that using merging algorithms with an artificial root node (Line 10) to connect all the parents
O(|G|) space does not make any sense; as one can simply 066CCs in S (Lines 11-14). Then, we simply apply existing
partition refinement, which can reconstruct the bisimaolati partition refinemen®ai ge_Tarj an (e.g.,[29]) to determine
from scratch. The hybrid algorithm proposed in this sect®n the minimum bisimulation. We remove the artificial root afte
specially designed to apply partition refinement SfICs. the minimum bisimulation is obtained (Line 16).

We also note that Theorem 4.1 cannot be extended to acyclid’he simple Inodes inQ’ are processed by a merging
graphs. In fact, a previous work [21] has proposed a mergiatgorithmmer ge_bi si mi | ar (Lines 07 and 19-25). Lines 20-
algorithm that efficiently returns the minimum bisimulatio 21 check a simple node in @’ and its siblings with the

Theorem 4.1: Given anSCC S and a merging algorithmA
for determining minimum bisimulatiomd(S) requires(]S|)
space. O



IPFOCtEdee t()ji si (le ?f_cyr;;i c and 2. The result is shown in Fig. 5(c). The traversal proseed

nput: a reduce ata gra f

Output: the minimum bisimulation ofZ, B and encounters a node connecting to supernode 1. Its only

01Q = get _next _t op_or der (G) Inode parent is t.he- same as _the Ir_10de of o_themodes.
Hence,ner ge_bi si ni | ar identifies this case (Line 20) and

02 while 0 . .
03 S fg{f‘ s is a supernode and € Q} merges the: nodeinto the Inode of other nodes Similarly,
04 partition_refinenment(s) bi si milar_cyclic identifies theb node that connects to
05 Q=Q-5 supernode 1 but is outside the supernode. Sincebthede
06 foreachgin Q" does not have an Inode parent as the othérnodes do, the
07 nerge_bi simlar(q, B) . .
08 @ =get_next_top_order(G) b node is not merged due to Line 21. The traversal proceeds
09 return B and returns Fig. 5(d) as the final result. We include supernod
Procedurepar tition_refinenent (s) 3 simply to illustrate that an arbitr'ary subgrgph may be
10G(V, E) = ({r}, 0) connected to supernodes and previous merging algorithms
E foregch SG"CJS may return a bisimulation far from the minimum one. O
= s
13 foreachp in s.par ent () Theorem 4.2:bi sinilar_cyclic(G) returns the minimum
14  GE=GEU(r,p) bisimulation ofG. O
15 Pai ge_Tar ] an(G)
16 remover Proof: The correctness ofi si mil ar_cyclic can be

17 foreach s in S . . . L .
18 sprocessed =1 ue established by analyzing all possible bisimilar nodesin

Procedure mer ge_bi si i | ar (g, B) Case 1: The bisimilar nodes; and ny are not in any SCC.

19 g.processed = L r ue The reduced grapltz is a DAG and n; and ny are simple
20 foreach ¢’ in ¢.si bl i ng() nodes inG. The merging part (Lines 01-02 and 06-09) of
H / / / . . . .
21 ifvp qu-,pgr?”;roe?]pt ()Eél ar egrt é)nst-t(-)l’s?p A bi si mi | ar_cycl i c is a non-optimized version of the merge
o peap peap mpp phase of [21]. By Theorem 1 in [21hi sinilar_cyclic
22 if ¢’ is inside a supernode .. . . .
23 update the parents gf¢ s to returns the minimum bisimulation of acyclic graphs.
(i) the entries ofs and (ii) the parents of’ Case 2: The bisimilar nodes; and n, are in some SCCs.
24 update the children of ¢ s to L .
(i) the exits ofs and (i) the children ofy’ ny andny can be bisimilar only if the supernodes of and
25 mer ge(q, ¢') ng are either the same or bisimilar. The bisimulation between

supernodes is determined correctly, by Case 1, as they are
nodes of the directed acyclic gragh When supernodes are

bisimulation definition (Definition 3.3). It should be notésat €ncountered, the classical partition refinement algorithm

the siblingg’ of ¢ can be an Inod@sidea supernodeie, an Partition_refinenent (Line 04) ofbisinilar_cyclic
SCO). Since we process the supernodes (Line 04) prior to thEPduces the minimum bisimulation of tr&€Cs of and be-
simple nodes (Lines 07) and the simple nodes in topologid4/€en the supernodes.

order (Lines 01 and 08), the bisimulation between the parefiase 3:n; is in an SCC;ny is not in any SCC; and
of ¢ and¢’ has already been determined prior to determiningy and no are bisimilar. This remaining case shows that
bisimulation betweery and ¢’. Therefore, if¢’ ~ ¢, ¢’ can bisimlar_cyclic can identify the bisimulation between
be located from the siblings of in the bisimulation graph (i) the Inodes that are natside any supernode and (i) some
computed so far (Line 20). A correctness argument is pravidénodes inside a supernodsdc).

in the proof of Theorem 4.2. if andq’ are bisimilar, we merge We can prove this case by a simple induction on the
q and¢’ (Line 25). We omit the pseudo-code oérge as it depth of the reduced graph. Define the depth of a nede
is straightforward. In addition, if/ is in a supernode, the of a reduced graphdrected acyclic graphas the maximum
parents and children of that are not ins are set to be the distance between the root node angdand the depth of a
entry and exit nodes of, respectively (Lines 23-24). reduced graph as the maximum depth among all nodes. The
of induction hypothesiss stated as follows:

Fig. 4. Bisimulation minimization of cyclic graphs

Example 4.1: Figs. 5(a)-(d) show a run
bisimlar_cyclic on the synthetic graph shown in ®:“bisimilar_cyclic returnsthe minimum bisimulation
Fig. 5(a). We assume that t/8Cs have been identified by of a reduced graptt,,,, whereG,, has a depthn.”

Gabow's algorithm, where the supernodes are highlighted jihe hase casewherem = 1, is trivially true.

Fig. 5(a). Also, we assume that each Dlnode ha§ been wna*]xe induction case Assume that the induction hypothesis is
placed in an Inode. For clarity, we omit such simple InOdGi?ue up tok. We now consider a reduced graph with a depth

from_ the figures.bi sim lar_cyclic taverses the graphé + 1. By definition, the nodes with the depth and those
in Fig. 5(a) top-down. It does not encounter any supernode L S .
in the first two levels. Hence, onlyrer ge bisi il ar with the depthk + 1 are not b|§|mllar.b| siml ar _cyclic

' ' - rIorocesses all of the nodes with the depthprior to those

is invoked and produces Fig. 5(b). In the third iteratio odes withk + 1 due to a traversal in the topological or-
supernodes 1 and 2 are encountered. We note that previggs

work [21] terminates and returns Fig. 5(b). In contrast, the Fget_next_top_order (G:). By the induction hypothesis,

hybrid algorithm .inVOkes_ partition_refinenent and 4 s straightforward that (i) a supernode itself and gily simple Inode,
produces the minimum bisimulation between supernodestht is not in anySCC, are not bisimilar.



merging nodes outside
and inside a supernode

(d)

Fig. 5. lllustration of the hybrid algorithm bi si ni | ar _cyclic

bi si m | ar_cycli c returns the minimum bisimulation of theview of this, we present an optimization in Section 6 that
subgraphG;, of G, where GG, is the subgraph ofy with a relaxes the correctness of intermediate bisimulations.

depth k. Suppose a nodey, is bisimilar to another node gxample 4.2: To illustrate the formula, we show some
n’ inside a supernode, where the depth ofiz11 is k + 1. numbers obtained from a run of si milar_cyclic of our
Sinceny; is bisimilar torn’, the depth ofs must be smaller implementation on axXMar k graph.|S,|, [S,,| and|S,,| are

or equal tok + 1. In addition, by Definition 3.3, for each 137 6, 1,52% and 62.& nodes, respectivelyP, M and
parentp of ny,,, there is a parent’ of n” such thatp ~ p’. ¢ are 0.0361/ Dnode, 0.007s/ Dnode and 0.49&s/ Dnode,

By the induction hypothesig; and p’ are declared bisimilar regpectively. The total cost is 46.6 seconds. At first glance
and placed in arinode (Lines 22-25) in an earlier run of tne ynit cost of merging algorithm/ is very small. We note
bi'sinilar_cyclic. Thatis,n,y, andn’ are siblings, after that A7 is small since|S,,| includes both bisimilar and non-
the minimum bisimulation of7;. has been computed. Thuspjsimilar nodes outside thecCs (checked by Line 21), where
ny+1 andn’ are checked (Line 21) and merged (Line 28). the time for processing the latter is very smallshows more
4.2 The Analytical Model precisely the performance of merging as all of the cross siode
are merged (Lines 23-24). In our implementatigh,s more
than an order of magnitude (13.7 times) slower thanWe
éemark that/S,| is two times larger thafS,,|. O

An asymptotic analysis ohi si i | ar _cycl i c is fairly sim-
ple. bi si mi I ar_cyclic runs in Big-theta of the slower of
the merging algorithm and partition refinement used. Howev
the actual performance bottlenecks of an implementatidheof
algorithm may be better analyzed using an analytical modét3 Generalization of Reduced Graphs
This section presents such a model of the hybrld algorithmFrom Examp|e 4.2 and Formula (1)' we can observe that to
We first distinguish theross nodesind thenon-cross nodes gptimize runtime, we may reduce the number of cross nodes.
that are both processed by the merging part of the hybijigl addition, Theorem 4.2 states that it is sufficient to apply
algorithm. More specifically, the cross nodes and non-croggrtition refinement oi$CCs to obtain the minimum bisimula-
nodes are processed by Lines 19-25, and Lines 19-22 and £8n. In response to the analysis, we present a generalizafi
respectively. An example of the only cross node in Fig. 5(g¢duced graphs that: (i) the generalized reduced graphainon
— thec connected to supernode 1 — is annotated in Fig. 5(dkwer cross nodes; (i) partition refinement may not operate

Definition 4.1: Cross nodeg’ are thelnodes that are not in On excessively large subgraphs; and (iii) the hybrid atbari
any SCC but are bisimilar to arinode inside anscc. The (without any modification) can operate on.

distancedist of a cross node € C (c.dist) is the length of ~ The main idea of the generalization is to redusecCs
the shortest path from an exit node of 80C to c. O together with the subgraphs connecting to them to supesinode
More specifically, given a supernodewe denoteG; ;. to be
the subgraph that contains @)and (ii) the nodes connected
b s via a path with at mosk steps. Next, we extend the

Next, we denote the cost &f si mi | ar_cyclic asCost
Cost consists of three costs: the unit costs for (i) partitio

refinementP of supernodes; (ii) the merging algorithi/ supernode ofs to represents as well asG, . We useGy,

of non-cross nodes; and (iii) the merging of cross nod(f\g representJ, . G, », where S is the set ofSCCs in the
SE S,k

C'.Sp’ S, and S” are the subgraphs applied tq partition) raphG. As a result, the cost of the hybrid algorithm can be
refinement, merging of non-cross nodes and merging of crgss

. rewritten as follows.
nodes, respectively.
Cost = |Sp| X P+ [Sy| x M + S| x C (1)  Costy =[G x P+ ([Sm \ Gi|) x M +(|Sc\ Gi|) x C' (2)

P, M andC can be measured as the minimum bisimulation As & increases, more subgraphse( G}) are applied
is constructed, for example, by a runtfsi mi | ar _cyclic. to partition refinement. Meanwhile, smaller subgraphs.,(
During the run, we can easily determif®,|, |S,,| and|S.,|. Sm \ Gr andS. \ G) are handled by merging algorithms.
P is estimated as the average runtime of Line Ddrepresents It is worth-noting that the largest possibtes the diameter
the average runtime of Lines 19-22 and 25 for non-cross nodeé the reduced graph. Our preliminary experiments show
Finally, C denotesM plus the average overhead due to Linethat if the generalization of the reduced graphs improves th
23-24 for cross nodes. overall performance, a small is sufficient. Since the sizes
Suppose the updates are relatively smé&ll. M and C  of G, for all £'s, may be recorded and determined in a run
can be considered as constants before and after updatesoflhi si mi | ar_cyclic, the k& for the optimal performance,
addition, we havesS,| + |S,,| + |S.:| = |G|. Also, it is often denoted as:,,;,, can be easily computed.
the case thaP < C, because the maintenance of intermediate Given the value of,,;,,, we recompute the supernodes with
bisimulations is far more costly than iterative refinemeits ,,.,,, which also results in a reduced graph. Then, the reduced



graph and its minimum bisimulation will be maintained with Procedurei nser t

. . . . . . Input: an edge to be inserted{, n2), a reduced graply,
the hybrid algorithm, which will be presented in Section 5. and its minimum bisimulatiorB

Example 4.3: Following up Example 4.2, we determine the Output: An updated graplt” and its updated minimum
numbers needed for computi@psf, as presented in Formula| ?'S':'_]UIat'lonB

. S . * 1. Initialization *
(2), in a run ofbi sinilar_cyclic. We nOte_thacl to G5 01if n1 ¢ G then raise exception  /* invalid insert */
are 4k, 88.5%, 10X, 105.% and 10&, respectively. Then, we |02 = ¢ /I a priority queue of affected SCCs in top. order
can compute thak,,,;,, = 2, whereCostQ = (137_6( + 88.5<) 039 =0 II'a priority queue of affected non-SCCs in top. orde
x 0.03615 + ( 1,52% - 88.5) x 0.007s + 266 x 0.493 |04 C 5 @ =insert_init((n, na) G 5 Q.9

= 18.4. As a reference, the actual runtime was20 [ |/* 2. Stabilize the updated into a stable bisimulation */
. 05istabilize(Q, s G, B
Finally, we remark that the model may be used to make (© )

a coarse prediction on the largest number of updaies ( | °° ¢ = GPOWE) I* update the SCC info. irG:" */
the size of a batch of updates) to be handled by the hybriél 3. Merging the marked inodes by the hybrid algorithm */
algorithm, as opposed to a full recomputation using partiti | % et Pi simlar_cyclic_marked(c’, 5)
refinementCos}. models the worst case scenario of an updatgProcedurei st abi |l i ze(Q, S, G, B)

an update affects alSCCs in the data graph. To simplify | 98 while © # 0 or S # 0

our analysis, we assume that an update, on average, affects \/;/ hln-e S?Sié'%etg;ﬁa” Inodes in supernodes first */
f% of the SCCs. Therefore, the cost of the hybrid algorithn 1 pick a node L, n) from S

is approximately f%x Cos},. For example, the time for a remove (y, n) from S

full recomputation of the minimum bisimulation ofvar k is |11 if I,, is neither stable nor a singleton

approximately 0.036 x 1.68v= 60.48 seconds. Suppoge |12 split I, into [y = I, - {n} andl> = {n}
for all (I, n')in S

is 20%. The hybrid algorithm is efficient when the number of replace it with (1, n) and (a, n/) in S
updates is smaller than 60.48/(18x420%) ~ 16. From our |13 mark I, and I3 o
experiments, we observe that this number is 12. 14 add{(In., ns) | ns is child of n;, n; € I
andns in some supernodéso S
15 add{I,,| nq is a child ofn;, n; € I2
5 INCREMENTAL MAINTENANCE andny is not in any supernodgsio Q

. . . . /* 2. stabilize Inodes that are not inside any supernode */
This section proposes the overall maintenance algorithdh g while © £ 0 then

its support on various forms of updates. First, in Sectidn 5.| 17 pick a nodel,, € Q; removel, from Q
we present the insertion of an edge (n.) (i.e.,insert in |18 if I, is neither stable nor a singleton
. . s 19 split 7,, into a stable sef
F_lg. 6), whereny can be elth_er existing or new node. Then, forall I, in @ replace it withZ in Q
single edge deletion is described in Section 5.2. Subgragh a 20 for each I in 7
i i 21 mark I
batch updates are presented in Section 5.3. > add{(1,., ) | s is ni's child,
n; € I andns in the supernode of} to S
5.1 Single edge insertion 23 add{ In, | nq € child of n;,

n; € I andng not in any supernodgsto Q
Ina nut;hell, the oygrall algorlthm con_S|st_s obabi |.| Z€ | procedurei nsert i nit ((ny, na). G, B, O, )
phase with an explicisCC handling, which is absent in pre-| 24 G = insert (11, n2) into G and the data graph af
vious algorithms, and ai ni ni ze phase which is essentially | 25if n2 is new
bi simlar_cyclic detailed in Section 4. Since an update " Greate 2 ”‘i*r‘ft’o"g_d%;
may make a bisimulation unstable, tls¢abilize phase mark I, ’
computes a stable but non-minimum bisimulation. Then, thé&6if I,,, is not stable
mi ni mi ze phase uses the hybrid algorithm for minimization,2? ~ 8dd{(n,, n2) | n2 is inside a supernogeto S
. . i add{I,, | n2 is not inside any supernogi¢o Q

Below, we give the details of thet abi | i ze phase. . : : : — — .
The stabilize phase.The st abi | i ze phase is presented inFIg'. 6. A single edge insertion for the minimum bisimulation of
Lines 01-06 and 08-27 of Fig. 6. We maintain two priorityCyCIIC graphs
gueues, ranked by their topological order, to record twalkinnz)}). Similarly, we add toQ the Inodel,, if ny is not in
of Inodes that need to be stabilized. Specifically, we Sse any supernode (Line 27).
to record the Inodes inside sonseipernodeqLine 02) and Next, we stabilize the Inodes i§ and Q recursively until
Q (Line 03) to record thdnodesthat are not in anysCCs a stable bisimulation is obtainedd, S and Q are empty):
maintained in topological ordeln the st abi | i ze phase, we (1) We process the Inodes i as follows (Lines 09-15): We
mark the modified Inodes (Lines 13 and 21) which will beelect a node: and its Inodel,, from S. We split n from
examined in theri ni m ze phase in topological order. I,, as theScC of n is potentially non-bisimilar to th&CC of

The pseudo-code in Fig. 6 can be described as follows. Firsther nodes in/,, (Lines 10-12). (The maintenance &fwill
we simply insert a new data edge into the reduced data gramhneeded by batch updates and explained in Section 5.3.) We
and a new edge between Inodes into the bisimulation graphmark the split Inodes (Line 13) so that they will be checked
in Line 24 and Line 25, respectively. Assume the insertian theni ni nmi ze phase. In Lines 14-15, we insert the children
makes the Inode ofi, unstable (Line 26). To initializes, if  of the split Inode that are involved in some supernodes éhto
nsy is in a supernode, we add, and its Inode taS (i.e., {(I,,, and the remaining children int@.




Fig. 7. (a) a data graph; (b) the minimum bisimulation; (c) a stabilized bisimulation; (d) the updated minimum bisimulation

(2) The handling ofQ is shown in Lines 16-23. We select anS or Q (Lines 22-23) and stabilized in later iterations.
Inode I,, from Q (Line 17). As in other work €.9.,[21]) for Therefore, all unstable Inodef, 1's in Z;,; must be
acyclic graphs (Line 19), if,, is not stable, we splif,, into a stabilized in some iterations inst abi | i ze, as they are all
set of stable Inodeg. (Similarly, the maintenance @ will be placed in eitherS or Q. The hypothesis is true, which is a
elaborated in batch update.) For succinctness of pregamtatcontradiction of¥. =« O

we postpone the discussion on our splitter optimizationl unLrh o h all he bisimulati
Section 6. We mark Inodes i in Line 21. In Lines 22-23, | nestabilize phase essentially traverses the bisimulation

we update the affected nodSsand Q, similar to Lines 14-15. graph.B and SCCs in the reduced data graph to stabilize gpd
mark the Inodes that are affected by the update. In addition,

Lemma 5.1: Given a graphGo and its reduced grapti, sincesccs themselves may be affected by an update, we use
an edge insertionr(;, n2) and the minimum bisimulatiols  Gabow's algorithm to compute the updatsdc information
of G, Procedurei st abi | i ze returns a stable bisimulation of the reduced graph, which is needed by the hybrid algorithm

graph B’ of the updated7,. 0 (in Line 06).
Proof: We prove the lemma by contradiction. First, werhe minimize phase.The mi ni ni ze phase is an application
make the following assumption: of bi si mlar_cyclic detailed in Section 4.1, with a minor

U: “i stabilize yields an unstable bisimulation gragh. modification. The modification is that we do not apply the hy-

By this assumption¥, there is at least one unstable Inod@"id algorithm to all of the Inodes returned by thieabi | i ze

X in B'. Note thatX was stable before the insertion,( Pha@se, butonly to the Inodes that have been marked.

ns). The stability of some ancestors &f must be altered by Example 5.1: We illustrate Algorithm i nsert (mainly

(n1, n2). As we are considering aingle insertion, X must istabilize) with an example. A cyclic data graph is shown
be (directly or indirectly) connected to,. Then, we consider in Fig. 7(a). For simplicity, we assume that the nodes in
two (exhaustive) cases of: the data graph have the same label and skip the drawings

Case 11f X is directly connected tas, X is made stable by of trivial supernodes. To facilitate discussion, the nodeof
Lines 04-05 and either of Lines 14-15 or Lines 22-23. Th&ch data node is shown. We useto denote an Inode. The
contradicts With¥. — « minimum bisimulation of Fig. 7(a) is shown in Fig. 7(b).
L Assume that we insert an edge (20,17) into the data graph.
Case 2 SupposeX is indirectly connected taw;. Then, we Algorithm i nsert initially puts {12,17} into Q (Line 04).

show a cc')n.tradlct.|0r.1 ta by an induction. . {12,17 is unstable because node 20 has a childig,17%
Hypothesisi st abi | i ze stabilizesZ},, where for alll; in 7y, but node 15 does not. Then, in Line 19, node 17 is split from
there is a path of the length from n; to . {12,17. The modified Inodes are marked, with a “*" sign

Thebase casés k& = 1, which is Case 1. Then, let us considein the figure. Thest abi | i ze phase proceeds recursively and
the inductive stepZ,,;. Consider an Inodd ; € I, finally produces the graph in Fig. 7(c). We invoke Gabow’s
where I, is a child node of an Inodé;. in Z,. Suppose algorithm to update th&CC information of the reduced data
I1.41 is unstablew.r.t. I;.. Since the whole bisimulation graphgraph. By calling the hybrid algorithm, we obtain the update
was stable before the insertioh, must have been modified, minimum bisimulation, shown in Fig. 7(d).

specifically, split by i st abi | i ze, in an earlier iteration of It should be remarked that while a previous work [21]
i stabilize.istabilize is invoked in Line 12 and Line produces the same stabilized graph (Fig. 7(c)), it returns
19 only. Thus, we examine the following two (exhaustivelfig. 7(c) as the final bisimulation. This is because it lacks
sub-cases: the handling or8CCs as discussed in Section 4. Subsequently,
Case 2.1Supposd}, is the result of the split logic at Line 12. any subgraph that is connected to $@&C with nodes 17, 18,
The reduced graph ismaGand the while loop i st abi | i ze 19 and 20 €.g, node 21) will not be merged, as tI8eC is
encodes a topological traversal. Therefore, wheis split, its not merged with other bisimila®CCs. O

child Inodes, includingl,.,, are not marked. Suppose is  Analysis. The time complexity of Proceduiest abi | i ze can
either/, or I in Line 12. Sincel}.1, is a child of I}, Iy41 S pe established as follows. The Inodes are processed by eithe
added to eithesS (Line 14) orQ (Line 15). Therefore/s11  of the while loops (Lines 09 and 16) at most once, which takes
will be stabilized in later iterations. O(|E|). Without any optimization, the split take(|V|) in the
Case 2.2Suppos€, is the result of the split logic at Line 19. worst case. With proper optimizatior.§.,[29]), stablizing an
Due to the topological traversal okt abi | i ze, I;41 is not Inode can be done inO(log(]V])). Hence. thest abi | i ze
marked. Its child Inodes, including, are added to either phase runs ifO(| E|log(|V])).
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Theorem 5.2: The bisimulation graph returned bynsert is | Procedurei nsert_subgr aph
minimum O Input: a subgraph to be inserted, g), a reduced grapl,

and its minimum bisimulgtiorB o
Proof: This can be established by putting Theorem 4.pOutPut: Al;‘islijm‘?‘éggngg}pml and its updated minimum
and Lemma 5.1 together. Specificaliyst abi | i ze returns a S .
.. . .l 01b=partition_refinement (g
correct bisimulationB of the updated graph and the hybrid o2 nsert ((n1, no), GU g, B U b)

algorithm determines the minimum bisimulation Bf O] :
Procedurei nsert _bat ch

) ) Input: a set of edges to-be-insertégy, a reduced graply,
5.2 Single edge deletion and its minimum bisimulatior

. . . Qutput: An updated grapiG;’ and its updated minimum
Our technique on edge insertion can be adopted to support bisi,ﬁulaﬁongB,p P

an edge deletion, n,) with minor modifications. Here, We | o1 tor each (ny, ) in E;

discuss the modifications in relation to the pseudo-codéaef t if n1 ¢ G then raise exception  /* invalid insert */
algorithmi nsert presented in Fig. 6: (i) In Line 01, we delete| 025 =0

the edge from the data graph. (ii) After the deletion, we &hec¢ 82 f%r:egch cin Ej

the stability of,,, in Line 02, initializeS and Q, and finally |05 (G, B,S, Q) =insert_init(e G, B, Q,5)
invoke st abi | i ze and bi sinilar_cyclic_nmarked as in | o6istabilize(Q, S, G, B)

i nsert. 07 ¢’ = Gabow(G) .

08return bi simlar_cyclic_marked(G’, B)

Example 5.2: Following up the insertion example of Fig. 7, _
suppose that we delete the edge between nodes 20 and 7 8- Insertion of a subgraph

from the data graph of the bisimulation shown in Fig. 7(d).nsert _batch takes a set of edge insertionSs, a re-
Since node 17 is in a supernod¢2(7,17}, 17) is placed in duced graphG and its minimum bisimulationB as input
S. Then, by Lines 09-15 of stabi | i ze, we split 17, 18, and outputs the minimum bisimulationnser t _bat ch calls

19 and 20 from the Inodes of the supernode iteratively. Sincgsert i nit to initialize the two priority queuesS and
Inode {6,11,2% is connected to the supernode, node 21 i9) used ini nsert with each edge inF;. If inserting e,

also split from its Inode by Lines 16-23. This results in thesheree = (n;, no), makesB unstable, we record, in S

graph in Fig. 7(cwithout the edge{20}, {17}). By applying and Q and stabilize the relevant Inodes frofp, iteratively
the hybrid algorithm on such graph, we obtain the minimumsy usingi st abi | i ze (Line 06). Inst abi | i ze, the Inodes

bisimulation shown in Fig. 7(b). [ to-be-split due to the edges ji's| may be overlapping, which
may appear multiple times i and Q. Thus, after each spilit,
5.3 Batch Updates i stabilize replaces the existing Inode & and Q with the

This subsection shows how updates of a subgraph and balfgbsg arf(te(:;;?ke iﬁ; (Ii_rllnie:siftar;)itlcghm;r?ebi lir:itzigl)i.zation
dat f ed ted. Similar to th i - L = '
Lpcates ol edges are supporte imiiar fo e previous 3819 insert is invoked |E;s| times, which takesO(|Es|)

tions, we present our techniques with insertions. The det&i In the st abi | | h the Gabow’s alaorith d
deletions are similar and are omitted due to space conmraiﬁLme' [N thestabi11ze phase, the L5abows algorthm an
the mini ni ze phase are invoked once only. Therefore,

Subgraph insertions. A subgraph insertion can be SUPjsert patch andinsert have the same time complexity
ported by a combination of the techniques proposed {phen |E;| < |G| In other words,i nsert _bat ch extends
earlier sections. The pseudo-code is presented in Proggs usability ofi nsert by paying a negligible cost.

dureinsert_subgraph, in Fig. 8. We assume that the t10- p,e o space limitations, we prove the correctness of
be-inserted subgrappwill be connected to an existing graph; L <ert bat ch in Appendix B.

G via an edgei nsert _subgraph computes the minimum
bisimulation of g, denoted asbh, and invokesi nsert to
insert the edge that connects and g, that returns the 6 OPTIMIZATION ON THE HYBRID ALGORITHM
minimum bisimulation of the updated graph. The correctne&n top of the algorithms proposed earlier, we present three
of i nsert_subgr aph is a direct extension of Theorem 5.2. optimizations, that arise from bisimulation maintenartke

As presented in Section 4, the performance bottlenefikst two are applicable to partition refinement in general. (
of insert is on determining bisimulation betweedCCs for acyclic and cyclic graphs). The third is specific to cross
and nonsCCs (i.e., the cross nodes dfi si mi | ar _cyclic). nodes which affect the performance of our hybrid algorithm.

In insert_subgraph, when a subgraph is inserted; Optimizing partition refinement. Given a reduced graph
bi'similar_cyclic is invoked once. G of a data graphG, (after update), Lemma 5.1 states
Batch insertions. It may sometimes be inconvenient to onlythat the bisimulationB returned byi st abi | i ze is a stable
allow updates that localized in a subgraph. In addition, if Bisimulation ofGy. By Theorem 1 of Kaushikt al.[28], B is
to-be-inserted subgrapf is connected to an exsiting graphknown to be a refinement of the minimum bisimulation. This
G with multiple edges, we first insert the subgraph usinignplies that it is not necessary to further refine the parti
one edge and then insert the remaining edges in a batchB. Thus, only partial refinement is invoked in maintaining
To address these updates efficiently, the technique abovehis minimum bisimulation.

generalized to other forms of batch insertions, as shownSpecifically, in computing the minimum bisimulation &f

in Procedurei nsert_batch of Fig. 8. More specifically, using partial refinement, we consider the input data graph as
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as opposed to the nodesSECs of Gy. That is, the partitions in Data graphs. We used both synthetic and real-world datasets
B arenon-partitionable Then, partition refinement is appliedin our experiments: (i) As in the previous work [21], we
on the SCCs of B, whose size is often much smaller tharused thexvar k generator [32] to derive synthetic graphs to
those ofGy. Assuming thaiB,,,;,, is the minimum bisimulation illustrate various aspects of our algorithms. BGEs in XMar k
obtained, the nodes in a partitiohin B,,;, are simply all are mainly composed of manyDREFs of open_auct i ons
of the nodes inl; for all i: Vi,cr {n | n € I;}. A similar to persons and vice versa. In the test with various graph
optimization (in the absence of reduced graphs) has besmes, the number of vertices/edges ranged from 168k/1®9k t
adopted in previous worke(g, [21], [28]). 1.68M/1.97M and the number ofDREFs ranged from 31k to
2. Optimizing refinement splitter. A classical optimization 307k. Unless specified otherwise, we usédir k with 168k
on partition refinement is to recursively split smaller jimms ~Vertices to study various characteristics of our algorihkive
first [29]. It has been shown that this optimization leads togmark thatxivar k graphs often contain one largeC (that
lower time complexity and to a faster partition convergerite Contains many smallescCs). This is the reason why [21] can
is evident that such an optimization assumes that the dige (f1@intain minimal bisimulations, whose sizes are similahte
number of nodes) of a partition is generally directly prepofMinimum ones. To test the algorithm on various cyclic graphs
tional to the splitting required to stabilize the partitidhthe W€ Wwill specify some preprocessing ofvark to generate
topology of the bisimulation graph does not alter dramdiica Update workloads. (i) A real-world graph on bibliography
by an update, the existing topology can be a direct indipati§lata up to Year 2002, denoted disi p, was used. It contains
of the number of splits that partition refinement requires f®10k vertices, 784k edges arkb7 SCCs. The vertices of
convergence. Hence, we propose an efficient optimizedesplitdP! p can be authors and publications. The reference edges
that exploits the existing bisimulation. in dbl p represent citations between publications. In some

The details of the new splitter can be presented as followxperiments, we used somdel p graphs of various sizes by
Given a partitionl during the process of partition refinementéxtracting the last 5z-th years ofdbl p, by varying:. (iii)
the number of old (overlapping) partitions inis assumed to Another real-world graph on citation data [25], denoted as
be approximately the number of splits required to convergét ation, was used. It contains 45k vertices, 374k edges and
to the final partition(s). The optimized splitter of paditi 11 SCCS. The number of th8CCs inci tat i on is somewhere
refinement (in Fig. 4parti ti on_ref i nenent, Line 15) will between the number in theMark and dbl p datasets. (iv)
first split the partition that overlaps with the smallest men The last real dataset we used was a social network dataset
of old partitions. called sl ashdot [33]. It contains 82k vertices and 948k
edges. Each vertex is a user, labeled wider. An edge
represents friendship between useilsashdot has one large

. . CC containing many smaller non-trivi®CCs. The SCC has

ComC 1 Formues () and (2), Gven s undate: PIOCeOURk verios and 512« e, 67% and 96% of allertces
someSCCs but subsequently, most cross nodes may be mergaen(fi edges, respeciively).
with their Inodes before, if the update does not change tE&periment 1: Reconstruction performance. To study
minimum bisimulation much. Our next optimization aims athe runtimes of the hybrid algorithm, we invoked
reducing some unnecessary splits and merges of cross nodesi ni | ar_cyclic on XMark graphs of various sizes

The main idea is to “mask out” the cross nodesSECs and compared them with partition refinement [29]. The result
when applying Procedurest abi | i ze. The bisimulation of is shown in Fig. 9(a). The figure shows that the hybrid
non-cross nodes are maintainedibysert without the cross algorithm outperformed partition refinement, even in full
nodes. At the end of nsert, an (unstable) intermediatereconstructions. In particular, for the data graph with8M6
bisimulation is yielded. Then, we unmask the cross nodes avettices, the hybrid algorithm was 24% faster. The reason
minimize the intermediate bisimulation top-down again ang that the subgraphs iXMVar k are not “very bisimilar” and
verify whether the Inodes of the unmasked cross nodes m@artition refinement takes many steps to converge.

require splitting and merging. If the minimum bisimulationsyperiment 2a: Maintenance under single insertion.We
does not change much, most cross nodes pass the verificagiath nerformed an experiment on insertions. Giventiter k

3. Optimization on cross nodesA performance issue of the
hybrid algorithm is the minimization of cross nodégi.e., its

and no splitting and merging are ever required. with 168k/199k vertices/edges, we removed 500 edges ran-
domly and then inserted them. The cumulative insertion time
7 EXPERIMENTAL EVALUATION is reported in Fig. 9(b). The-axis is the number of insertions

This section presents a detailed experimental evaluatiah texecuted and thg-axis is the cumulative time of insertions.
verifies the efficiency of the proposed hybrid algorithm anlig. 9(b) shows that the cumulative insertion time was linea
the effectiveness of its optimizations. to the number of insertions. Moreover, the hybrid algorithm

Hardware and software. We ran our experiments on a servef/Wways returned the minimum bisimulations (Fig. 9(c)).

with a Dual 4-core 2.93GHz CPU and 30 GBWM running We conducted a similar experiment dbl p andci t ati on,
Solaris OS. The hybrid algorithm was developed on top ofiz., real graphs with mor&CcCs. First, we focused odbl p.
previous algorithm [21], which was written DK 1.5. The The hybrid algorithm took 11s to compute the minimum
library for graphs isopenj gr aph [31], which is also used in bisimulation ofdbl p from scratch. Similar to the previous
previous work [21], to ensure fair comparison. experiment, we removed 500 edges randomly from the data



12

0 T
Hybnd Algc\rllhm —

sl TUPT e é 00 - e Hybrid Algorithn ;..F.
T T 20t B z [ g i
E 40 % a0 | 1 % 74l - |
g £ % -
| ° r 1 % 7431 B
% 20 E ol 1 é o '-’.-P
@ w0r § 50 - g [ o 1
0 T 3 ‘ ‘ ‘ ‘ B ‘ ‘ ‘
0 20 40 60 80 100 120 140 160 180 ] 100 200 300 400 500 ) 100 200 300 400 500
Number of Vertices(x 10k) . o _ xthinsertion . x-th insertion
(a) Bisimulation time vsXVar k graph sizes  (b) Cumulative insertion time of hybrid algoX{Var k) (c) Minimum bisimulation size XMar k)
& 350 T T T T 29 T T T T B s m s s e B
Z wof 1 285 - e g L inserions i co o moay he SCC -
E‘ 250 |- 1 % 28 — g g
2 ol | 5 57 | — i s —
£ ol 5 ,.f — | Bl
® 3 | — £ o4 —————
£ 100 T 265 - 4 s
= - 02
E s0p b 26 Hybnd Algonthm + e
3 L res a2 % S I
[ 100 200 300 400 500 o 100 200 300 400 500 01 2 3 456 7 8 910
) X X xrthlinseninn ) L. . xthinsertion . % of users inserted
(d) Cumulative insertion time of hybrid algodpl p) (e) Minimum bisimulation sizedbl p) (f) Insertion workload ofs| ashdot
¢ 72 S Weerions —— o7
ssb il msatons e o
2°[ 720 | 2wl e
sl = g L
N 2 sl gar
£s) £ .
= 5 710 S o
£ 2+ B € o
L r0s b g _,r""’
sl |
‘ ‘ . ‘ ‘ - —
s w1 2 = o 0 w0 w0 a0 5o s 1 1w 2
Number of Vertices(x1000) # subgraph added # Edges Inserted (x1000)
(g) Cumulative time of subgraph insertidXVar k) (h) Minimum bisimulation size XMar k) (i) Batch edge insertionsX{Var k)

Fig. 9. Performance evaluation of the hybrid algorithm and the minimum bisimulations of data graphs

s — g
Partial PT e 6 |- Partial PT =------ o 8 5000 | épnmlzed Spﬁner — i
P i = PT e Pitioe g,’ Splitter ======
2z T 5 1 S 000 | 1
£ 7 E 4 4 g
S 3 4 5 5 3000 - 4
k=t I 1 2
g 2 E 2 .l | 5 2000 B
@ iz} 5
@ 3 g o | 1 5 1000 - B
.......................... 2
0 P o Lo £ P
0 20 40 60 80 100 120 140 160 180 340 360 380 400 420 440 460 480 500 520 z 0 20 40 60 80 100 120 140 160 180
Number of Vertices(x 10k) Number of Vertices(k) Number of Vertices(x 10k)
(a) Optimization on partial refinemenX{Var k) (b) Optimization on partial refinemendpl p) (c) Optimization on the new splitte{VAr K)
£ 1300 — 350 : _. 350 .
8 épllmlzed Spfmer ------- s Cross'Node Opl\mlzallon _— ) Cross'Node Opllm\zauon —_— o
é 1200 |- T Splitter ======- '-' i B 300 - ablize ------- i g 300 | ablize =---=-- f‘,-‘
= 3 - S P
g £ 250 T c 250 s 4
£ 1100 1 = - s o
2 § 200 L T o200 2 R
8 1000 [ g £ e 8 P
£ e $ 150 |- e < ot 1
- L g 1 £ - g
8 900 “““‘,xi = 10l o % 100 - 2 1
5 800 e g § s g E sof g
2 w 3
2 745 360 360 400 420 440 460 460 500 520 %o 100 200 300 400 500 %o 100 200 300 400 500
Number of Vertices(k) L. . x-th insertion x-th insertion
(d) Optimization on the new splittedpl p) (e) Optimization on cross nodeXar k) (f) Optimization on cross nodeslbl p)

Fig. 10. Effectiveness of the optimization techniques of the hybrid algorithm

graph and inserted them back. On average, each insertiarger thei d, the newer the user. We removeéo of vertices
took only 0.63s. The cumulative insertion time is reportedf the largest ds and their edges, and inserted their edges back
in Fig. 9(d). The figure shows that the cumulative insertiofas new users registered and added friends) in the ascending
time was also linear to the number of insertions. Unlike thaerder ofi ds. (For each new vertex, we inserted their edges
XMar k datasets, the sizes of the minimum bisimulations edndomly.) We ranged: from 1% to 10% and consistently
dbl p decreaseds the edges were inserted (Fig. 9(e)). Thisbtained the following workload (shown in Fig. 9(f)) and
was becausebl p was relatively more bisimilar thakMar k  results: The update workload contained 40% of new edges
and bisimilar nodes were recovered as edges were insertbdt did not modify thesCC and the hybrid algorithm finished
We note that the minimal bisimulation dbl p returned by the each of such insertion in 0.3s, as the &8¢ part (in terms of
previous work [21] was 10% larger than the minimum one.edges) is only 4% of the entire graph. The remaining 60% of
We then applied the hybrid algorithm ari t ati on. The the insertions led to a performance that was identical tb tha
algorithm took 1.59s to compute the minimum bisimulationf recomputationi(e., 8s), since thesCC was large.
from scratch. Similar to previous insertion experiment® WeExperiment 2b: Maintenance under batch insertions.
removed 500 edges from the data graph and then insertyd tested the performance of subgraph insertions and batch
them. Each insertion took 0.37s on average and the cumeilatdge insertions usingMVar k, since we could have a better
insertion time is omitted as it also roughly linear to the m@m control on generating batch insertions. First, we seleb@&@l
of insertions. Unlike thexvar k anddbl p datasets, the sizesopen_aucti on subgraphs randomly and removed them from
of the minimum bisimulations oti t ati on (roughly 10.4k the XVark graph. Theopen_auct i on subgraphs were often
Inodes) did not change much throughout the 500 insertiongonnected to theNar k graph via manyl DREF edges. These
We tested our algorithm osl ashdot . The vertex has an edges, denoted &, were used for batch edge insertions. On
i d and it can be considered as user[33]. We assumed the average, each subgraph had 45 vertices and 44 edges. The



13

' ' ‘ Aﬁa\yt\éa\ [T —
=l . ! ., Runtime of Gur Program ===+

Bisimulation time(s)
NN oW
s8R 8
Bisimulation time(s)
~
b

°r Runnm:gla%‘rc%"rggeéﬂ ------- 1
T2 s 4 s A
k k
(@) Accuracy of the prediction modeX{Var k) (b) Accuracy of the prediction modetlbl p)
Fig. 11. Accuracy of the analytical model on the relative performance of ks in the generalization of the reduced graphs

cumulative insertion time is reported in Fig. 9(g). | _mm “
The z-axis is the total number of edges of those subgraphs; = o &

to-be-inserted and thg-axis is the cumulative insertion time.

The result shows that the insertion time was linear to theg

total number of vertices. The slope was 11.2s per subgraph (4 = e i i ;

vertices per second). In contrast, a full reconstructiark 89s. © 6 3o 100 10 200 250 300 360 40 480 500 ® 0 50 100 150 200 250 300 30 400 450 500
For batch edge insertions, we used tHEREF edgesS, as  (a) Maintenance performances amLp  (b) Query performances onsLP

described above: We extracted 500 sets of edges M@mk; Fig. 12. Maintenance and query performances of minimum and

Each set contained 56 edges on average. We compared baigfimal bisimulations on DBLP

insertion {.e., i nsert _bat ch) and individual insertionife.,

insert). The result is shown in Fig. 9()). The throughput$), -ross nodes offered roughly 5% improvementdohp.

of i nsert _bat ch andi nsert were 8.97 and 0.72 edges per

second, respectivelynsert _bat ch is about 12.5 times fasterEh)(per"ﬁner.]t 4 Alccura::y of thr? cost mOdel';Ni preselnt. |
thani nsert. The time for the insertions by reconstructiond'® €xperimental results on the accuracy of the analytica

was about 19,500s andhsert bat ch is more than 800 times mod_el presented_in Section _4'2' We compared thg actual
faster. Whilei nsert _bat ch is slower than the maintenanceruntlmes of our implementation and those determined by

of minimal bisimulation [21], [21] requires occasional oee the analyti_cal _model OrXMark ano_l dol p. The results_are
struction and nsert bat ch does not. presented in Figs. 11(a)-(b). The figures show thatktheth

Similarly, we appliedi nsert _bat ch on sl ashdot with the optimal performance of the hybrid algorithm on the three

500 edge insertions containing 347 new users. We O%Q.Ia graphs were correctly predicted. That is, the trendief t
tual runtimes and the predicted ones were consistent. Our

tained a throughput 34.3 edges (23.8 nodes) per secofid

i nsert_batch is 372 times faster than full recons;tructions.EXpe”mem"’1| results reveal that when we used the genedaliz

This verified that batch insertions with the hybrid algamith reduced graphs, smatils would be_sufficient. Howeve_r, ther_e
can handle rapid updates in real time. were clear gaps between the runtimes and the predicted.times

Experiment 3: Optimization effectiveness.We next present TP (renriasgntls ttr;at tthf 'm_?_fmer:trit'?nn:n\é?l\fi man'ﬁ}t“miz ;
an experiment on the synthetic datag®hr k and the largest of many cata structures. these implementation specitice we

real datasetdbl p that verified the effectiveness of eacl{10t modeled, and they introduced some non-trivial runtimes

optimization. Due to space limitations, the experiments offXperiment 5: Maintenance and query performances.
citation andsl ashdot are placed in Appendix A. Finally, we illustrate the effects of maintenance and query

(1) First, we applied partiion refinement ir]evaluation with bisimulation with thesLP dataset. We gen-
bisimilar_cyclic with and without partial refinement. erated 500 random insertions that invols€C. That is, even

The resul is repored In Figs. 10(a)-(). Fig 10a) shofle, =0° e fseras, T minet B FREta B
that the performance improvement from the optimization o ation may ditter. Ve assume that the previous metho

XMar k increased as the graph size increased. The result fr %:onstructed the bflrgullz?)tg())n after: t?\ll'fry 10(.) mser(tjlonsl,
dbl p (Fig. 10(b)) shows that the optimization only require oreover, we generate reachabllity queries randomly

: ; : : etween nodes involvingCCs. Queries were evaluated via
hly 11% of split d by the cl | splitter. : <. . .
rougnly ¢ Of Splis requiired by the classical spiter a depth-first traversal of the bisimulation. Fig. 12(a) skow

(2) Second, we verified the effectiveness of our splitteg thne maintenance times. The reconstruction of previous work
results are shown in Figs. 10(c)-(d). The figures show that g to clear increases in the maintenance time. At the first
splitter always converged earlier than the classical teplitn glance, individual maintenance did not appear efficient. iVhe
XMar k, out splitter required up to 30% fewer steps to convergfe patch maintenance was used, for example, a batch of
(Fig. 10(c)). In fulldbl p (i.e., with 510k vertices), our splitter jnsertions containing roughly 50 insertions on average, it
offered up to 10% fewer splits (Fig. 10(d)). was already clearly more efficient than the previous work.
(3) Third, we tested the optimization on cross nodes, whe@ne may be tempted to use the minimal method with less
the optimalk’s had been accurately determined by the neftequent reconstructions. However, queries would be exatu
experiment on the analytical model (Section 4.2). We pesn larger bisimulations. Fig. 12(b) shows the total quemet
formed the insertions okMar k as specified before. As shownbetween time of the minimal and minimum bisimulations.
in Fig. 10(e), the total time for 500 insertions with the eptiThe minimum one consistently produced smaller query times
mization was approximately 62% of the time taken using thban the minimal one. In addition, the minimal bisimulation
non-optimized version. Fig. 10(f) shows that the optimmat sometimes led to significantly longer query times.

c(el(’me(s)

maintenar
&

)
Query time(s)
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. Fan, J. Li, X. Wang, and Y. Wu, “Query preserving gr pres-
8 CONCLUSIONS [23] W. Fan, J. Li, X. W d Y. Wu, “Q ing grapm

. . sion,” in SIGMOD, 2012, pp. 157-168.
We have proposed a novel incremental maintenance of {a D. Saha, “An incremental bisimulation algorithm,” FSTTCS2007.
minimum bisimulation of cyclic graphs with respect to af?5] J. Leskovec, “Stanford large network dataset coltli

. . . . . . http://snap.stanford.edu/data.
edge insertion/deletion or a batch insertion/deletion. Naee [26] A. Dovier, C. Piazza, and A. Policriti, “An efficient agthm for

proposed a hybrid algorithm that takes advantage of the computing bisimulation equivalenceTheor. Comput. Scivol. 311, no.

o L - P . 1-3, pp. 221-256, 2004.

two existing C.lasses OT bisimulation m!n|m|zqt|on algbms, [27] J. Deng et al., “Optimizing incremental maintenance of mili bisim-

namely merging algorithms and partition refinement. To our ~ ulation of cyclic graphs,” iIrDASFAA 2011.

knowledge, the hybrid algorithm is the first incremental maai [28] R. Kaushik, P. Bohannon, J. F. Naughton, and P. Sherddates for
. . . . . structure indexes,” itVLDB, 2002.

tenance algorithm that guarantees minimum bisimulation fg; Rr. paige and R. E. Tarjan, “Three partition refinementatgms,” SIAM

cyclic graphs. We have proposed a generalization of reduced J. Comput. vol. 16, no. 6, pp. 973-989, 1987.

; o ; [30] H. Gabow, “Searching,” iDiscrete Math. and its Applications: Hand-
graphs and an analyt_lcal mo_del to facilitate an optimalqrerf book of Graph TheoryJ. Gross and J. Yellen, Eds. CRC Press, 2003,
mance from the hybrid algorithm. We have complemented the pp. 953-984.

hybrid algorithm with three optimizations. We have present [311 J. M. Salvo, “Openjgraph — java graph and graph drawingjeut,”
http://openjgraph.sourceforge.net/latest.html.

a detailed experiment on both synthetic and real grapfs; a.'Schmidt et al., “XMark: A benchmark for XML data managertien

that verified the efficiency of the hybrid algorithm and the33] in VLDE, 2002. e ) o X |

. T : : : : J. Leskovec et al., “Community structure in large netvgorklatural
gffectlveness of our optimizations. We are |nvgst|gat|og { cluster sizes and the absence of large well-defined clysteternet
incorporate the recent external algorithm for bisimulatj6] Mathematicsvol. 6, no. 1, pp. 29-123, 2009.

into our algorithms.
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APPENDIX A
SUPPLEMENTARY EXPERIMENT

Due to the space constraint, we present the experiment on t
optimization techniques on the two real datasstsati on
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Opt. h li
sl ashdot and reported the results in Figs. 13(a)-(b). (2).ta’€ti ony e new Spmeg a‘;ﬁ-dot")” the new  splitier

Fig. 13(a) shows that the optimiation @mt ati on reduced
the runtime by approximately 41%. Fig. 13(b) shows that thi§g. 14. Effectiveness of the new splitter on ci tati on
optimization offered a marginal improvement shashdot.  and sl ashdot
Regarding the optimization on the splitter, d¢nt ati on, o
the new splitter required 16% fewer splits compared to theZ .., [ crossNode Gptimizatfon
classical splitter (Fig. 14(a)). Regardinsg ashdot , the new
splitter often reduced the number of splits by 8% (Fig. 14(b) °
Finally, we tested the optimization on cross nodes. Figall5( -
shows that the optimization on cross nodes offered roughly
24% performance improvement artati on. When tested . -~ L
with sl ashdot, the performance of the optimized hybrid e senon O o om0 a0 0 s
algorithm was 2.25 times better than that of non-optimizedg) Optimization on cross nodefp) Optimization on cross nodes
version (shown in Fig. 15(b)). This is because the updatéCI tatiom sl ashdot)

did not often change the bisimulation of t8eC and theSCC  Fig. 15. Effectiveness of optimization on cross nodes on
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of sl ashdot and therefore the number of cross nodes weggt ati on and sl ashdot

large.

APPENDIX B
CORRECTNESS OF BATCH UPDATES

Proposition 2.1: Given an insertion of a subgraph and the
existing minimum bisimulatio® of a graph G, whereg is
connected tdZ via an edge(n, n9), the bisimulation graph
returned byi nsert _subgraph is minimum. O

Proof: First, partition_refinenent(g) returns the
minimum bisimulationb of g. Without (ny, n2), g andG are

disconnected and and B are their minimum bisimulation,

respectively. By Defintion 3.U B is the minimum bisimu-
lation of g U G. Next, consider the insertion ofi(, ns). By
Theorem 5.2j nsert is correct and the maintenancetaf B
in response to the insertion of a single edge, n.) into gUG
is minimum. O

Proposition 2.2: Given a batch of edges dfs of a graph
G and its minimum bisimulatior3, the bisimulation graph

returned byi nsert _bat ch is minimum. O
25 r ; 10
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Fig. 13. Effectiveness of partial refinement of the hybrid
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Proof: The proof can be established by applying
Lemma 5.1 and Theorem 5.2 in a simple case analysis and
mathematical induction on the size [df;|, where|E;| is the
batch of edges to-be-inserted.

Hypothesis:The i st abi | i ze of i nsert_batch returns a
stable bisimulation whehZs| < n.

Base caseWhen |Es| is 1, the hypothesis is true due to
Lemma 5.1.

Inductive step: Suppose the hypothesis is true upgHg

= m. Next, consider|Es| = m + 1. Denote thatEs; =
{61, €2, ..ty €y 6m+1}.

Case 1:e,,+1:(n1,n2) does not directly causd,,, unsta-
ble. Then, I,, is not added to the queueS and Q by
insert_init.If [,, causes the bisimulation unstable, it must
be only due to the insertions ef;, es, ..., or e,,,. Due to the
hypothesis assumptiod,,, is stabilized byi st abi | i ze.

Case 2:¢,,+1:(n1,n2) directly causesl,,, unstable./,,, is
added to the priority queueS and/orQ by i nsert _init.
We exploit the following two facts in our arguments.

o Fact (1) istabilize stabilizes (unstable) Inodes by
splitting. It does not merge Inodes. We note that stable
Inodes will not be split into unstable Inodes.

o Fact (2) In each split of an Inodé, we denotel is split
into an Inode sef. 7 replaces/ and is maintained it
and/orQ (Lines 12 and/or 19 of st abi | i ze).

The Inodes in the priority queu® are maintained in
topological order. The unstable ancestorsigf in Q due
to insertions ofeq, es, ..., Or ¢, are stabilized, by induction
hypothesis.

(i) Supposel,,, has been split due to insertions @of, eo, ...,
or e,,. By Fact (2),1,, is replaced byZ,,, and maintained in
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S and/or Q. If some of the Inodes ifT,,, are not stabilized,

they are detected and stabilized. By Lines 09-15 andZ}19, Finally, we have the following:

and its descendants are stabilized. ex (n—1)

(i) Otherwise, suppose thaf,, is not split due to other —y  xAzI-Y “
insertions.z,,, and its descendants are stabilized aisigert,

by Lemma 5.1. _ We may further generalize Formula (4) to the algorithm for
~ The above two cases are exhaustive. Therefolgaich insertions. Denotd to be the size of batch updates. For
istabilize returns a stable bisimulation forEs = analysis simplicity, we assumeis divisible by B. Denote the

m + 1. The hypothesis is true fon + 1. Thus, by induction, time for batch updates i&(B). Then, the time for processing
i stabilize ofinsert_batch returns a stable bisimulationthe y, insertions and: x n queries withMy is:

for all |Es| > 1.
By Theorem 4.2, the stabilized bisimulation returned by
i stabilizeis minimized. Thereford,nsert _bat ch returns
the minimum bisimulation of7 after the insertions OE(;. Ol S|m||ar|y, we can derive an inequa”ty deB to be more
efficient thanMy :

n/Bx I(B)+ (n—n/B)xY +¢xn/Bx X2 ,T®) (5)

APPENDIX C ex B(n—B)/2xA>I1(B)—Y (6)
COST MODEL FOR INCREMENTAL MAINTE-

NANCE ALGORITHM DiscussionsWe can make two observations from the models
To further show the performance differences between iof Formulas (4) and (6). Firstly\/,,;, or Mz is more efficient
cremental methods, we derive a model for the incrementakn My when the query performances gained from using the
maintenance algorithms over a sequence: dfisertions. For minimum bisimulation (LHS) are larger than the additional
presentation simplicity, we usé/’s to denote themethod time needed to maintain the minimum bisimulation (RHS).
being discussed. Specifically, we refer the maintenancef mTherefore, the faster the queriesare, the more likely the
imal bisimulation asMy- [21], our maintenance of minimum inequalities of Formulas (4) and (6) are true. Seconfi(y3)
bisimulation asM,,,;, and the batch update version df,.;, increases slightly withB. When B is large (but smaller
asMp. Moreover, our model does not consider recomputatiafan »/2), Formula (6) is more likely to be trueMp is
per update as it is inefficient by far when compared to thelatively more efficient. Thirdly, we remark thafy requires
mothodsMy, M,,i, and Mp. reconstructions occasionally and the minimal bisimutati®
We assume that the size of minimal bisimulation graduallyot available during reconstructions. Such reconstrostiare
deviates from that of minimum bisimulation, in practice. Weliminated by using eithed/, ;,, or Mg.
assume the average query time differences between minimal
and minimum bisimulations arA’s. The query time on the
initial minimum bisimulation ist. The query time for the
minimum bisimulation after the-th insertionT'(7) is ¢; +
Ej.:l A;. Based on the assumption that the average query
times between minimal and minimum ones deviate modesily,
we assumed; = A and A; =i x A. Finally, we remark
that if the minimal bisimulation deviated from the minimum
one drastically because of some updates, the advantages on
average query time a#/,,,;, or Mg would be more apparent
than those ofMy-.
Denote the number of queries during theupdates is: x
n, wherec can be viewed as the query rate relative to the
update rate. Assume further the queries arrive evenly deer t
period of then updates for the ease of analysis. The average
maintenance time for minimal bisimulation 1§ whereas that
for minimum bisimulation isl.
The time for processing the insertions and: x n. queries
of My isin xY + ¢ x X ,T(i). The time for theM,,.,
is:n x I +cx X! t;. Hence, the following condition holds
when M,,,;,, is more efficient tham/y :

nXY +ex TP T() >nxI+ex X t; 3)

By applying some simple arithmetics, we have

s A>Ty
n



